A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution

Super-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-11, Vol.56 (11), p.6792-6810
Hauptverfasser: Haut, Juan Mario, Fernandez-Beltran, Ruben, Paoletti, Mercedes E., Plaza, Javier, Plaza, Antonio, Pla, Filiberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6810
container_issue 11
container_start_page 6792
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Haut, Juan Mario
Fernandez-Beltran, Ruben
Paoletti, Mercedes E.
Plaza, Javier
Plaza, Antonio
Pla, Filiberto
description Super-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR techniques are particularly useful to cope with the increasing demand remote sensing imaging applications requiring fine spatial resolution. Even though different machine learning paradigms have been successfully applied in SR, more research is required to improve the SR process without the need of external high-resolution (HR) training examples. This paper proposes a new convolutional generator model to super-resolve low-resolution (LR) remote sensing data from an unsupervised perspective. That is, the proposed generative network is able to initially learn relationships between the LR and HR domains throughout several convolutional, downsampling, batch normalization, and activation layers. Then, the data are symmetrically projected to the target resolution while guaranteeing a reconstruction constraint over the LR input image. An experimental comparison is conducted using 12 different unsupervised SR methods over different test images. Our experiments reveal the potential of the proposed approach to improve the resolution of remote sensing imagery.
doi_str_mv 10.1109/TGRS.2018.2843525
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2126663520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8400496</ieee_id><sourcerecordid>2126663520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-de6c03f59f3ad2eedeb46e4d1dad4f9de10d138f5293f90cadf542b5780794523</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG-dZJN0cyxVa0EU-nHyELabSdnabtZkt8V_75YWLzPw8rwz8BByz2DAGOinxWQ2H3Bg2YBnIpVcXpAekzJLQAlxSXrAtEp4pvk1uYlxA8CEZMMe-RrRDzzQZ8SaTrDCkDflHrusOfjwTZ0PdFnFtsawLyNaOsOdb5DOsYpltabzbmwxme7ydRcesWSG0W_bpvTVLbly-Tbi3Xn3yfL1ZTF-S94_J9Px6D0pBPAmsagKSJ3ULs0tR7S4EgqFZTa3wmmLDCxLMye5Tp2GIrdOCr6SwwyGWkie9snj6W4d_E-LsTEb34aqe2k440qpzgd0FDtRRfAxBnSmDuUuD7-GgTk6NEeH5ujQnB12nYdTp0TEfz4TAEKr9A_aPG4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126663520</pqid></control><display><type>article</type><title>A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution</title><source>IEEE Electronic Library (IEL)</source><creator>Haut, Juan Mario ; Fernandez-Beltran, Ruben ; Paoletti, Mercedes E. ; Plaza, Javier ; Plaza, Antonio ; Pla, Filiberto</creator><creatorcontrib>Haut, Juan Mario ; Fernandez-Beltran, Ruben ; Paoletti, Mercedes E. ; Plaza, Javier ; Plaza, Antonio ; Pla, Filiberto</creatorcontrib><description>Super-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR techniques are particularly useful to cope with the increasing demand remote sensing imaging applications requiring fine spatial resolution. Even though different machine learning paradigms have been successfully applied in SR, more research is required to improve the SR process without the need of external high-resolution (HR) training examples. This paper proposes a new convolutional generator model to super-resolve low-resolution (LR) remote sensing data from an unsupervised perspective. That is, the proposed generative network is able to initially learn relationships between the LR and HR domains throughout several convolutional, downsampling, batch normalization, and activation layers. Then, the data are symmetrically projected to the target resolution while guaranteeing a reconstruction constraint over the LR input image. An experimental comparison is conducted using 12 different unsupervised SR methods over different test images. Our experiments reveal the potential of the proposed approach to improve the resolution of remote sensing imagery.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2843525</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convolutional neural networks (CNNs) ; Data models ; Detection ; Domains ; Image processing ; Image reconstruction ; Image resolution ; Imagery ; Imaging ; Imaging techniques ; Learning algorithms ; Machine learning ; Remote sensing ; Resolution ; Spatial discrimination ; Spatial resolution ; super-resolution (SR) ; Test procedures ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-11, Vol.56 (11), p.6792-6810</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-de6c03f59f3ad2eedeb46e4d1dad4f9de10d138f5293f90cadf542b5780794523</citedby><cites>FETCH-LOGICAL-c402t-de6c03f59f3ad2eedeb46e4d1dad4f9de10d138f5293f90cadf542b5780794523</cites><orcidid>0000-0001-6701-961X ; 0000-0002-9613-1659 ; 0000-0003-1374-8416 ; 0000-0003-0054-3489 ; 0000-0002-2384-9141 ; 0000-0003-1030-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8400496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8400496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haut, Juan Mario</creatorcontrib><creatorcontrib>Fernandez-Beltran, Ruben</creatorcontrib><creatorcontrib>Paoletti, Mercedes E.</creatorcontrib><creatorcontrib>Plaza, Javier</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><creatorcontrib>Pla, Filiberto</creatorcontrib><title>A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Super-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR techniques are particularly useful to cope with the increasing demand remote sensing imaging applications requiring fine spatial resolution. Even though different machine learning paradigms have been successfully applied in SR, more research is required to improve the SR process without the need of external high-resolution (HR) training examples. This paper proposes a new convolutional generator model to super-resolve low-resolution (LR) remote sensing data from an unsupervised perspective. That is, the proposed generative network is able to initially learn relationships between the LR and HR domains throughout several convolutional, downsampling, batch normalization, and activation layers. Then, the data are symmetrically projected to the target resolution while guaranteeing a reconstruction constraint over the LR input image. An experimental comparison is conducted using 12 different unsupervised SR methods over different test images. Our experiments reveal the potential of the proposed approach to improve the resolution of remote sensing imagery.</description><subject>Convolutional neural networks (CNNs)</subject><subject>Data models</subject><subject>Detection</subject><subject>Domains</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Imagery</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Remote sensing</subject><subject>Resolution</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>super-resolution (SR)</subject><subject>Test procedures</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG-dZJN0cyxVa0EU-nHyELabSdnabtZkt8V_75YWLzPw8rwz8BByz2DAGOinxWQ2H3Bg2YBnIpVcXpAekzJLQAlxSXrAtEp4pvk1uYlxA8CEZMMe-RrRDzzQZ8SaTrDCkDflHrusOfjwTZ0PdFnFtsawLyNaOsOdb5DOsYpltabzbmwxme7ydRcesWSG0W_bpvTVLbly-Tbi3Xn3yfL1ZTF-S94_J9Px6D0pBPAmsagKSJ3ULs0tR7S4EgqFZTa3wmmLDCxLMye5Tp2GIrdOCr6SwwyGWkie9snj6W4d_E-LsTEb34aqe2k440qpzgd0FDtRRfAxBnSmDuUuD7-GgTk6NEeH5ujQnB12nYdTp0TEfz4TAEKr9A_aPG4Q</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Haut, Juan Mario</creator><creator>Fernandez-Beltran, Ruben</creator><creator>Paoletti, Mercedes E.</creator><creator>Plaza, Javier</creator><creator>Plaza, Antonio</creator><creator>Pla, Filiberto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6701-961X</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0003-1374-8416</orcidid><orcidid>https://orcid.org/0000-0003-0054-3489</orcidid><orcidid>https://orcid.org/0000-0002-2384-9141</orcidid><orcidid>https://orcid.org/0000-0003-1030-3729</orcidid></search><sort><creationdate>20181101</creationdate><title>A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution</title><author>Haut, Juan Mario ; Fernandez-Beltran, Ruben ; Paoletti, Mercedes E. ; Plaza, Javier ; Plaza, Antonio ; Pla, Filiberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-de6c03f59f3ad2eedeb46e4d1dad4f9de10d138f5293f90cadf542b5780794523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convolutional neural networks (CNNs)</topic><topic>Data models</topic><topic>Detection</topic><topic>Domains</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Imagery</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Remote sensing</topic><topic>Resolution</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>super-resolution (SR)</topic><topic>Test procedures</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haut, Juan Mario</creatorcontrib><creatorcontrib>Fernandez-Beltran, Ruben</creatorcontrib><creatorcontrib>Paoletti, Mercedes E.</creatorcontrib><creatorcontrib>Plaza, Javier</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><creatorcontrib>Pla, Filiberto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haut, Juan Mario</au><au>Fernandez-Beltran, Ruben</au><au>Paoletti, Mercedes E.</au><au>Plaza, Javier</au><au>Plaza, Antonio</au><au>Pla, Filiberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>56</volume><issue>11</issue><spage>6792</spage><epage>6810</epage><pages>6792-6810</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Super-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR techniques are particularly useful to cope with the increasing demand remote sensing imaging applications requiring fine spatial resolution. Even though different machine learning paradigms have been successfully applied in SR, more research is required to improve the SR process without the need of external high-resolution (HR) training examples. This paper proposes a new convolutional generator model to super-resolve low-resolution (LR) remote sensing data from an unsupervised perspective. That is, the proposed generative network is able to initially learn relationships between the LR and HR domains throughout several convolutional, downsampling, batch normalization, and activation layers. Then, the data are symmetrically projected to the target resolution while guaranteeing a reconstruction constraint over the LR input image. An experimental comparison is conducted using 12 different unsupervised SR methods over different test images. Our experiments reveal the potential of the proposed approach to improve the resolution of remote sensing imagery.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2843525</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6701-961X</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0003-1374-8416</orcidid><orcidid>https://orcid.org/0000-0003-0054-3489</orcidid><orcidid>https://orcid.org/0000-0002-2384-9141</orcidid><orcidid>https://orcid.org/0000-0003-1030-3729</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-11, Vol.56 (11), p.6792-6810
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2126663520
source IEEE Electronic Library (IEL)
subjects Convolutional neural networks (CNNs)
Data models
Detection
Domains
Image processing
Image reconstruction
Image resolution
Imagery
Imaging
Imaging techniques
Learning algorithms
Machine learning
Remote sensing
Resolution
Spatial discrimination
Spatial resolution
super-resolution (SR)
Test procedures
Training
title A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Deep%20Generative%20Network%20for%20Unsupervised%20Remote%20Sensing%20Single-Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Haut,%20Juan%20Mario&rft.date=2018-11-01&rft.volume=56&rft.issue=11&rft.spage=6792&rft.epage=6810&rft.pages=6792-6810&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2843525&rft_dat=%3Cproquest_RIE%3E2126663520%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126663520&rft_id=info:pmid/&rft_ieee_id=8400496&rfr_iscdi=true