Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation
This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy an...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-07, Vol.105 (1) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 105 |
creator | Luo, Shi Lee, Jiun-Haw Liu, Chee-Wee Shieh, Jia-Min Shen, Chang-Hong Wu, Tsung-Ta Jang, Dongchan Greer, Julia R. |
description | This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering. |
doi_str_mv | 10.1063/1.4890086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126580751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126580751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-424e638a9c1cffb6f8821075981439f47a85b1fc09e7c7b36ad256d40d0d4bbd3</originalsourceid><addsrcrecordid>eNotkEtLAzEAhIMoWKsH_0HAi4VuzWM3mz1K0VooeKieQzaPNqVN1iRb8N-7tT0NA8M3zADwiNEMI0Zf8KzkDUKcXYERRnVdUIz5NRghhGjBmgrfgruUdoOtCKUj4Nc5Gr_J2ylM2VnrTUpTKL2GB6diSDn2KvfRwGDhvH9e-ulCTtaGwLx1Hlq3PySoTReSy0bDo5MwdX3OJjq_-ceoUJij7EKU2QV_D26s3CfzcNEx-H5_-5p_FKvPxXL-uioUrXguSlIaRrlsFFbWtsxyToY1VcNxSRtb1pJXLbYKNaZWdUuZ1KRiukQa6bJtNR2DpzO3i-GnNymLXeijHyoFwYRVfIDhITU5p05LUzRWdNEdZPwVGInTnQKLy530D7mUZ1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126580751</pqid></control><display><type>article</type><title>Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Luo, Shi ; Lee, Jiun-Haw ; Liu, Chee-Wee ; Shieh, Jia-Min ; Shen, Chang-Hong ; Wu, Tsung-Ta ; Jang, Dongchan ; Greer, Julia R.</creator><creatorcontrib>Luo, Shi ; Lee, Jiun-Haw ; Liu, Chee-Wee ; Shieh, Jia-Min ; Shen, Chang-Hong ; Wu, Tsung-Ta ; Jang, Dongchan ; Greer, Julia R.</creatorcontrib><description>This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4890086</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Copper ; Copper indium gallium selenides ; Curvature ; Electron energy loss spectroscopy ; Energy dissipation ; Energy transmission ; Evaporation ; Failure modes ; Microscopy ; Microstructure ; Modulus of elasticity ; Molybdenum ; Morphology ; Nanoindentation ; Residual stress ; Scanning electron microscopy ; Selenium ; Shearing ; Stiffness ; Thin films ; Transmission electron microscopy ; Yield point</subject><ispartof>Applied physics letters, 2014-07, Vol.105 (1)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-424e638a9c1cffb6f8821075981439f47a85b1fc09e7c7b36ad256d40d0d4bbd3</citedby><cites>FETCH-LOGICAL-c358t-424e638a9c1cffb6f8821075981439f47a85b1fc09e7c7b36ad256d40d0d4bbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><creatorcontrib>Liu, Chee-Wee</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Wu, Tsung-Ta</creatorcontrib><creatorcontrib>Jang, Dongchan</creatorcontrib><creatorcontrib>Greer, Julia R.</creatorcontrib><title>Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation</title><title>Applied physics letters</title><description>This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Copper</subject><subject>Copper indium gallium selenides</subject><subject>Curvature</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Energy transmission</subject><subject>Evaporation</subject><subject>Failure modes</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Molybdenum</subject><subject>Morphology</subject><subject>Nanoindentation</subject><subject>Residual stress</subject><subject>Scanning electron microscopy</subject><subject>Selenium</subject><subject>Shearing</subject><subject>Stiffness</subject><subject>Thin films</subject><subject>Transmission electron microscopy</subject><subject>Yield point</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEAhIMoWKsH_0HAi4VuzWM3mz1K0VooeKieQzaPNqVN1iRb8N-7tT0NA8M3zADwiNEMI0Zf8KzkDUKcXYERRnVdUIz5NRghhGjBmgrfgruUdoOtCKUj4Nc5Gr_J2ylM2VnrTUpTKL2GB6diSDn2KvfRwGDhvH9e-ulCTtaGwLx1Hlq3PySoTReSy0bDo5MwdX3OJjq_-ceoUJij7EKU2QV_D26s3CfzcNEx-H5_-5p_FKvPxXL-uioUrXguSlIaRrlsFFbWtsxyToY1VcNxSRtb1pJXLbYKNaZWdUuZ1KRiukQa6bJtNR2DpzO3i-GnNymLXeijHyoFwYRVfIDhITU5p05LUzRWdNEdZPwVGInTnQKLy530D7mUZ1A</recordid><startdate>20140707</startdate><enddate>20140707</enddate><creator>Luo, Shi</creator><creator>Lee, Jiun-Haw</creator><creator>Liu, Chee-Wee</creator><creator>Shieh, Jia-Min</creator><creator>Shen, Chang-Hong</creator><creator>Wu, Tsung-Ta</creator><creator>Jang, Dongchan</creator><creator>Greer, Julia R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140707</creationdate><title>Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation</title><author>Luo, Shi ; Lee, Jiun-Haw ; Liu, Chee-Wee ; Shieh, Jia-Min ; Shen, Chang-Hong ; Wu, Tsung-Ta ; Jang, Dongchan ; Greer, Julia R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-424e638a9c1cffb6f8821075981439f47a85b1fc09e7c7b36ad256d40d0d4bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Copper</topic><topic>Copper indium gallium selenides</topic><topic>Curvature</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Energy transmission</topic><topic>Evaporation</topic><topic>Failure modes</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Molybdenum</topic><topic>Morphology</topic><topic>Nanoindentation</topic><topic>Residual stress</topic><topic>Scanning electron microscopy</topic><topic>Selenium</topic><topic>Shearing</topic><topic>Stiffness</topic><topic>Thin films</topic><topic>Transmission electron microscopy</topic><topic>Yield point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><creatorcontrib>Liu, Chee-Wee</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Wu, Tsung-Ta</creatorcontrib><creatorcontrib>Jang, Dongchan</creatorcontrib><creatorcontrib>Greer, Julia R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Shi</au><au>Lee, Jiun-Haw</au><au>Liu, Chee-Wee</au><au>Shieh, Jia-Min</au><au>Shen, Chang-Hong</au><au>Wu, Tsung-Ta</au><au>Jang, Dongchan</au><au>Greer, Julia R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation</atitle><jtitle>Applied physics letters</jtitle><date>2014-07-07</date><risdate>2014</risdate><volume>105</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4890086</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-07, Vol.105 (1) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2126580751 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Atomic force microscopy Copper Copper indium gallium selenides Curvature Electron energy loss spectroscopy Energy dissipation Energy transmission Evaporation Failure modes Microscopy Microstructure Modulus of elasticity Molybdenum Morphology Nanoindentation Residual stress Scanning electron microscopy Selenium Shearing Stiffness Thin films Transmission electron microscopy Yield point |
title | Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength,%20stiffness,%20and%20microstructure%20of%20Cu(In,Ga)Se2%20thin%20films%20deposited%20via%20sputtering%20and%20co-evaporation&rft.jtitle=Applied%20physics%20letters&rft.au=Luo,%20Shi&rft.date=2014-07-07&rft.volume=105&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4890086&rft_dat=%3Cproquest_cross%3E2126580751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126580751&rft_id=info:pmid/&rfr_iscdi=true |