Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation

This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-07, Vol.105 (1)
Hauptverfasser: Luo, Shi, Lee, Jiun-Haw, Liu, Chee-Wee, Shieh, Jia-Min, Shen, Chang-Hong, Wu, Tsung-Ta, Jang, Dongchan, Greer, Julia R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Applied physics letters
container_volume 105
creator Luo, Shi
Lee, Jiun-Haw
Liu, Chee-Wee
Shieh, Jia-Min
Shen, Chang-Hong
Wu, Tsung-Ta
Jang, Dongchan
Greer, Julia R.
description This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.
doi_str_mv 10.1063/1.4890086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126580751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126580751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-424e638a9c1cffb6f8821075981439f47a85b1fc09e7c7b36ad256d40d0d4bbd3</originalsourceid><addsrcrecordid>eNotkEtLAzEAhIMoWKsH_0HAi4VuzWM3mz1K0VooeKieQzaPNqVN1iRb8N-7tT0NA8M3zADwiNEMI0Zf8KzkDUKcXYERRnVdUIz5NRghhGjBmgrfgruUdoOtCKUj4Nc5Gr_J2ylM2VnrTUpTKL2GB6diSDn2KvfRwGDhvH9e-ulCTtaGwLx1Hlq3PySoTReSy0bDo5MwdX3OJjq_-ceoUJij7EKU2QV_D26s3CfzcNEx-H5_-5p_FKvPxXL-uioUrXguSlIaRrlsFFbWtsxyToY1VcNxSRtb1pJXLbYKNaZWdUuZ1KRiukQa6bJtNR2DpzO3i-GnNymLXeijHyoFwYRVfIDhITU5p05LUzRWdNEdZPwVGInTnQKLy530D7mUZ1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126580751</pqid></control><display><type>article</type><title>Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Luo, Shi ; Lee, Jiun-Haw ; Liu, Chee-Wee ; Shieh, Jia-Min ; Shen, Chang-Hong ; Wu, Tsung-Ta ; Jang, Dongchan ; Greer, Julia R.</creator><creatorcontrib>Luo, Shi ; Lee, Jiun-Haw ; Liu, Chee-Wee ; Shieh, Jia-Min ; Shen, Chang-Hong ; Wu, Tsung-Ta ; Jang, Dongchan ; Greer, Julia R.</creatorcontrib><description>This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4890086</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Copper ; Copper indium gallium selenides ; Curvature ; Electron energy loss spectroscopy ; Energy dissipation ; Energy transmission ; Evaporation ; Failure modes ; Microscopy ; Microstructure ; Modulus of elasticity ; Molybdenum ; Morphology ; Nanoindentation ; Residual stress ; Scanning electron microscopy ; Selenium ; Shearing ; Stiffness ; Thin films ; Transmission electron microscopy ; Yield point</subject><ispartof>Applied physics letters, 2014-07, Vol.105 (1)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-424e638a9c1cffb6f8821075981439f47a85b1fc09e7c7b36ad256d40d0d4bbd3</citedby><cites>FETCH-LOGICAL-c358t-424e638a9c1cffb6f8821075981439f47a85b1fc09e7c7b36ad256d40d0d4bbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><creatorcontrib>Liu, Chee-Wee</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Wu, Tsung-Ta</creatorcontrib><creatorcontrib>Jang, Dongchan</creatorcontrib><creatorcontrib>Greer, Julia R.</creatorcontrib><title>Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation</title><title>Applied physics letters</title><description>This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Copper</subject><subject>Copper indium gallium selenides</subject><subject>Curvature</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Energy transmission</subject><subject>Evaporation</subject><subject>Failure modes</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Molybdenum</subject><subject>Morphology</subject><subject>Nanoindentation</subject><subject>Residual stress</subject><subject>Scanning electron microscopy</subject><subject>Selenium</subject><subject>Shearing</subject><subject>Stiffness</subject><subject>Thin films</subject><subject>Transmission electron microscopy</subject><subject>Yield point</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEAhIMoWKsH_0HAi4VuzWM3mz1K0VooeKieQzaPNqVN1iRb8N-7tT0NA8M3zADwiNEMI0Zf8KzkDUKcXYERRnVdUIz5NRghhGjBmgrfgruUdoOtCKUj4Nc5Gr_J2ylM2VnrTUpTKL2GB6diSDn2KvfRwGDhvH9e-ulCTtaGwLx1Hlq3PySoTReSy0bDo5MwdX3OJjq_-ceoUJij7EKU2QV_D26s3CfzcNEx-H5_-5p_FKvPxXL-uioUrXguSlIaRrlsFFbWtsxyToY1VcNxSRtb1pJXLbYKNaZWdUuZ1KRiukQa6bJtNR2DpzO3i-GnNymLXeijHyoFwYRVfIDhITU5p05LUzRWdNEdZPwVGInTnQKLy530D7mUZ1A</recordid><startdate>20140707</startdate><enddate>20140707</enddate><creator>Luo, Shi</creator><creator>Lee, Jiun-Haw</creator><creator>Liu, Chee-Wee</creator><creator>Shieh, Jia-Min</creator><creator>Shen, Chang-Hong</creator><creator>Wu, Tsung-Ta</creator><creator>Jang, Dongchan</creator><creator>Greer, Julia R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140707</creationdate><title>Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation</title><author>Luo, Shi ; Lee, Jiun-Haw ; Liu, Chee-Wee ; Shieh, Jia-Min ; Shen, Chang-Hong ; Wu, Tsung-Ta ; Jang, Dongchan ; Greer, Julia R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-424e638a9c1cffb6f8821075981439f47a85b1fc09e7c7b36ad256d40d0d4bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Copper</topic><topic>Copper indium gallium selenides</topic><topic>Curvature</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Energy transmission</topic><topic>Evaporation</topic><topic>Failure modes</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Molybdenum</topic><topic>Morphology</topic><topic>Nanoindentation</topic><topic>Residual stress</topic><topic>Scanning electron microscopy</topic><topic>Selenium</topic><topic>Shearing</topic><topic>Stiffness</topic><topic>Thin films</topic><topic>Transmission electron microscopy</topic><topic>Yield point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><creatorcontrib>Liu, Chee-Wee</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Wu, Tsung-Ta</creatorcontrib><creatorcontrib>Jang, Dongchan</creatorcontrib><creatorcontrib>Greer, Julia R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Shi</au><au>Lee, Jiun-Haw</au><au>Liu, Chee-Wee</au><au>Shieh, Jia-Min</au><au>Shen, Chang-Hong</au><au>Wu, Tsung-Ta</au><au>Jang, Dongchan</au><au>Greer, Julia R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation</atitle><jtitle>Applied physics letters</jtitle><date>2014-07-07</date><risdate>2014</risdate><volume>105</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>This work examines Cu(In,Ga)Se2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4890086</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2014-07, Vol.105 (1)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2126580751
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Atomic force microscopy
Copper
Copper indium gallium selenides
Curvature
Electron energy loss spectroscopy
Energy dissipation
Energy transmission
Evaporation
Failure modes
Microscopy
Microstructure
Modulus of elasticity
Molybdenum
Morphology
Nanoindentation
Residual stress
Scanning electron microscopy
Selenium
Shearing
Stiffness
Thin films
Transmission electron microscopy
Yield point
title Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength,%20stiffness,%20and%20microstructure%20of%20Cu(In,Ga)Se2%20thin%20films%20deposited%20via%20sputtering%20and%20co-evaporation&rft.jtitle=Applied%20physics%20letters&rft.au=Luo,%20Shi&rft.date=2014-07-07&rft.volume=105&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4890086&rft_dat=%3Cproquest_cross%3E2126580751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126580751&rft_id=info:pmid/&rfr_iscdi=true