Creeping solitons and Hartman-Grobman theorem

In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Izzati, Khairudin Nur, Abdullah, Farah Aini, Hassan, Yahya Abu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 1
container_start_page
container_title
container_volume 1605
creator Izzati, Khairudin Nur
Abdullah, Farah Aini
Hassan, Yahya Abu
description In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical ordinary differential equations (ODEs) in the Euler-Lagrange system, in which the real eigenvalues of the ODEs are less than zero. It is found that the problem of unfolding the bifurcation of creeping solitons gives the critical value of 5th order nonlinear gain μc, which is the hyperbolicity loss as the external parameter μ is varied about the critical value. We restricted ourselves to the numerical space-time hyperbolic variation of creeping solitons and point out common features of our system with the Hartman-Grobman hyperbolic theorem when μ is varied.
doi_str_mv 10.1063/1.4887575
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126575264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126575264</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-6225ff746063fb9c12e490018958d4a8e080042cdb81debaa250b840b564eda23</originalsourceid><addsrcrecordid>eNotj81KAzEURoMoOFYXvsGA69R77-RvljJoKxTcKLgrSZPRljYZk_T9HdDV2X3nO4zdIywRVPeIS2GMllpesAalRK4VqkvWAPSCk-g-r9lNKQcA6rU2DeNDDmHax6-2pOO-plhaG327trmebOSrnNzMtn6HlMPpll2N9ljC3T8X7OPl-X1Y883b6nV42vCJ0FSuiOQ4aqHmR6Prd0hB9ABoemm8sCaAARC0886gD85akuCMACeVCN5St2APf7tTTj_nUOr2kM45zsotIak5j5TofgEYNEJT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126575264</pqid></control><display><type>conference_proceeding</type><title>Creeping solitons and Hartman-Grobman theorem</title><source>AIP Journals Complete</source><creator>Izzati, Khairudin Nur ; Abdullah, Farah Aini ; Hassan, Yahya Abu</creator><creatorcontrib>Izzati, Khairudin Nur ; Abdullah, Farah Aini ; Hassan, Yahya Abu</creatorcontrib><description>In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical ordinary differential equations (ODEs) in the Euler-Lagrange system, in which the real eigenvalues of the ODEs are less than zero. It is found that the problem of unfolding the bifurcation of creeping solitons gives the critical value of 5th order nonlinear gain μc, which is the hyperbolicity loss as the external parameter μ is varied about the critical value. We restricted ourselves to the numerical space-time hyperbolic variation of creeping solitons and point out common features of our system with the Hartman-Grobman hyperbolic theorem when μ is varied.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4887575</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bifurcations ; Differential equations ; Eigenvalues ; Landau-Ginzburg equations ; Ordinary differential equations ; Solitary waves ; Theorems</subject><ispartof>AIP conference proceedings, 2014, Vol.1605 (1), p.124</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924</link.rule.ids></links><search><creatorcontrib>Izzati, Khairudin Nur</creatorcontrib><creatorcontrib>Abdullah, Farah Aini</creatorcontrib><creatorcontrib>Hassan, Yahya Abu</creatorcontrib><title>Creeping solitons and Hartman-Grobman theorem</title><title>AIP conference proceedings</title><description>In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical ordinary differential equations (ODEs) in the Euler-Lagrange system, in which the real eigenvalues of the ODEs are less than zero. It is found that the problem of unfolding the bifurcation of creeping solitons gives the critical value of 5th order nonlinear gain μc, which is the hyperbolicity loss as the external parameter μ is varied about the critical value. We restricted ourselves to the numerical space-time hyperbolic variation of creeping solitons and point out common features of our system with the Hartman-Grobman hyperbolic theorem when μ is varied.</description><subject>Bifurcations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Landau-Ginzburg equations</subject><subject>Ordinary differential equations</subject><subject>Solitary waves</subject><subject>Theorems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj81KAzEURoMoOFYXvsGA69R77-RvljJoKxTcKLgrSZPRljYZk_T9HdDV2X3nO4zdIywRVPeIS2GMllpesAalRK4VqkvWAPSCk-g-r9lNKQcA6rU2DeNDDmHax6-2pOO-plhaG327trmebOSrnNzMtn6HlMPpll2N9ljC3T8X7OPl-X1Y883b6nV42vCJ0FSuiOQ4aqHmR6Prd0hB9ABoemm8sCaAARC0886gD85akuCMACeVCN5St2APf7tTTj_nUOr2kM45zsotIak5j5TofgEYNEJT</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Izzati, Khairudin Nur</creator><creator>Abdullah, Farah Aini</creator><creator>Hassan, Yahya Abu</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>Creeping solitons and Hartman-Grobman theorem</title><author>Izzati, Khairudin Nur ; Abdullah, Farah Aini ; Hassan, Yahya Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-6225ff746063fb9c12e490018958d4a8e080042cdb81debaa250b840b564eda23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bifurcations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Landau-Ginzburg equations</topic><topic>Ordinary differential equations</topic><topic>Solitary waves</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izzati, Khairudin Nur</creatorcontrib><creatorcontrib>Abdullah, Farah Aini</creatorcontrib><creatorcontrib>Hassan, Yahya Abu</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izzati, Khairudin Nur</au><au>Abdullah, Farah Aini</au><au>Hassan, Yahya Abu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Creeping solitons and Hartman-Grobman theorem</atitle><btitle>AIP conference proceedings</btitle><date>2014-01-01</date><risdate>2014</risdate><volume>1605</volume><issue>1</issue><epage>124</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical ordinary differential equations (ODEs) in the Euler-Lagrange system, in which the real eigenvalues of the ODEs are less than zero. It is found that the problem of unfolding the bifurcation of creeping solitons gives the critical value of 5th order nonlinear gain μc, which is the hyperbolicity loss as the external parameter μ is varied about the critical value. We restricted ourselves to the numerical space-time hyperbolic variation of creeping solitons and point out common features of our system with the Hartman-Grobman hyperbolic theorem when μ is varied.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4887575</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2014, Vol.1605 (1), p.124
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2126575264
source AIP Journals Complete
subjects Bifurcations
Differential equations
Eigenvalues
Landau-Ginzburg equations
Ordinary differential equations
Solitary waves
Theorems
title Creeping solitons and Hartman-Grobman theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Creeping%20solitons%20and%20Hartman-Grobman%20theorem&rft.btitle=AIP%20conference%20proceedings&rft.au=Izzati,%20Khairudin%20Nur&rft.date=2014-01-01&rft.volume=1605&rft.issue=1&rft.epage=124&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4887575&rft_dat=%3Cproquest%3E2126575264%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126575264&rft_id=info:pmid/&rfr_iscdi=true