Creeping solitons and Hartman-Grobman theorem
In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our prob...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1605 |
creator | Izzati, Khairudin Nur Abdullah, Farah Aini Hassan, Yahya Abu |
description | In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical ordinary differential equations (ODEs) in the Euler-Lagrange system, in which the real eigenvalues of the ODEs are less than zero. It is found that the problem of unfolding the bifurcation of creeping solitons gives the critical value of 5th order nonlinear gain μc, which is the hyperbolicity loss as the external parameter μ is varied about the critical value. We restricted ourselves to the numerical space-time hyperbolic variation of creeping solitons and point out common features of our system with the Hartman-Grobman hyperbolic theorem when μ is varied. |
doi_str_mv | 10.1063/1.4887575 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126575264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126575264</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-6225ff746063fb9c12e490018958d4a8e080042cdb81debaa250b840b564eda23</originalsourceid><addsrcrecordid>eNotj81KAzEURoMoOFYXvsGA69R77-RvljJoKxTcKLgrSZPRljYZk_T9HdDV2X3nO4zdIywRVPeIS2GMllpesAalRK4VqkvWAPSCk-g-r9lNKQcA6rU2DeNDDmHax6-2pOO-plhaG327trmebOSrnNzMtn6HlMPpll2N9ljC3T8X7OPl-X1Y883b6nV42vCJ0FSuiOQ4aqHmR6Prd0hB9ABoemm8sCaAARC0886gD85akuCMACeVCN5St2APf7tTTj_nUOr2kM45zsotIak5j5TofgEYNEJT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126575264</pqid></control><display><type>conference_proceeding</type><title>Creeping solitons and Hartman-Grobman theorem</title><source>AIP Journals Complete</source><creator>Izzati, Khairudin Nur ; Abdullah, Farah Aini ; Hassan, Yahya Abu</creator><creatorcontrib>Izzati, Khairudin Nur ; Abdullah, Farah Aini ; Hassan, Yahya Abu</creatorcontrib><description>In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical ordinary differential equations (ODEs) in the Euler-Lagrange system, in which the real eigenvalues of the ODEs are less than zero. It is found that the problem of unfolding the bifurcation of creeping solitons gives the critical value of 5th order nonlinear gain μc, which is the hyperbolicity loss as the external parameter μ is varied about the critical value. We restricted ourselves to the numerical space-time hyperbolic variation of creeping solitons and point out common features of our system with the Hartman-Grobman hyperbolic theorem when μ is varied.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4887575</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bifurcations ; Differential equations ; Eigenvalues ; Landau-Ginzburg equations ; Ordinary differential equations ; Solitary waves ; Theorems</subject><ispartof>AIP conference proceedings, 2014, Vol.1605 (1), p.124</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924</link.rule.ids></links><search><creatorcontrib>Izzati, Khairudin Nur</creatorcontrib><creatorcontrib>Abdullah, Farah Aini</creatorcontrib><creatorcontrib>Hassan, Yahya Abu</creatorcontrib><title>Creeping solitons and Hartman-Grobman theorem</title><title>AIP conference proceedings</title><description>In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical ordinary differential equations (ODEs) in the Euler-Lagrange system, in which the real eigenvalues of the ODEs are less than zero. It is found that the problem of unfolding the bifurcation of creeping solitons gives the critical value of 5th order nonlinear gain μc, which is the hyperbolicity loss as the external parameter μ is varied about the critical value. We restricted ourselves to the numerical space-time hyperbolic variation of creeping solitons and point out common features of our system with the Hartman-Grobman hyperbolic theorem when μ is varied.</description><subject>Bifurcations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Landau-Ginzburg equations</subject><subject>Ordinary differential equations</subject><subject>Solitary waves</subject><subject>Theorems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj81KAzEURoMoOFYXvsGA69R77-RvljJoKxTcKLgrSZPRljYZk_T9HdDV2X3nO4zdIywRVPeIS2GMllpesAalRK4VqkvWAPSCk-g-r9lNKQcA6rU2DeNDDmHax6-2pOO-plhaG327trmebOSrnNzMtn6HlMPpll2N9ljC3T8X7OPl-X1Y883b6nV42vCJ0FSuiOQ4aqHmR6Prd0hB9ABoemm8sCaAARC0886gD85akuCMACeVCN5St2APf7tTTj_nUOr2kM45zsotIak5j5TofgEYNEJT</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Izzati, Khairudin Nur</creator><creator>Abdullah, Farah Aini</creator><creator>Hassan, Yahya Abu</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>Creeping solitons and Hartman-Grobman theorem</title><author>Izzati, Khairudin Nur ; Abdullah, Farah Aini ; Hassan, Yahya Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-6225ff746063fb9c12e490018958d4a8e080042cdb81debaa250b840b564eda23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bifurcations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Landau-Ginzburg equations</topic><topic>Ordinary differential equations</topic><topic>Solitary waves</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izzati, Khairudin Nur</creatorcontrib><creatorcontrib>Abdullah, Farah Aini</creatorcontrib><creatorcontrib>Hassan, Yahya Abu</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izzati, Khairudin Nur</au><au>Abdullah, Farah Aini</au><au>Hassan, Yahya Abu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Creeping solitons and Hartman-Grobman theorem</atitle><btitle>AIP conference proceedings</btitle><date>2014-01-01</date><risdate>2014</risdate><volume>1605</volume><issue>1</issue><epage>124</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>In this paper, hyperbolicity analysis of the 5th order nonlinear gain of creeping soliton in the cubic-quintic complex Ginzburg-Landau equation (CGLE) is studied. To analyze the hyperbolicity of creeping soliton in dissipative system, we relate it to the Hartman-Grobman Theorem. We analyzed our problem based on perturbed variational eigenvalues approach in the reduced supercritical ordinary differential equations (ODEs) in the Euler-Lagrange system, in which the real eigenvalues of the ODEs are less than zero. It is found that the problem of unfolding the bifurcation of creeping solitons gives the critical value of 5th order nonlinear gain μc, which is the hyperbolicity loss as the external parameter μ is varied about the critical value. We restricted ourselves to the numerical space-time hyperbolic variation of creeping solitons and point out common features of our system with the Hartman-Grobman hyperbolic theorem when μ is varied.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4887575</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2014, Vol.1605 (1), p.124 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2126575264 |
source | AIP Journals Complete |
subjects | Bifurcations Differential equations Eigenvalues Landau-Ginzburg equations Ordinary differential equations Solitary waves Theorems |
title | Creeping solitons and Hartman-Grobman theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Creeping%20solitons%20and%20Hartman-Grobman%20theorem&rft.btitle=AIP%20conference%20proceedings&rft.au=Izzati,%20Khairudin%20Nur&rft.date=2014-01-01&rft.volume=1605&rft.issue=1&rft.epage=124&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4887575&rft_dat=%3Cproquest%3E2126575264%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126575264&rft_id=info:pmid/&rfr_iscdi=true |