Contact resonance force microscopy with higher-eigenmode for nanoscale viscoelasticity measurements

Nanoscale viscoelastic properties are essential for polymeric materials in their wide applications in nanotechnology. Here we proposed a contact resonance force microscopy (CRFM) method for viscoelasticity measurements by utilizing a cantilever's higher-eigenmode (n > 3). Numerical analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-07, Vol.116 (3)
Hauptverfasser: Zhou, Xilong, Fu, Ji, Miao, Hongchen, Li, Faxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 116
creator Zhou, Xilong
Fu, Ji
Miao, Hongchen
Li, Faxin
description Nanoscale viscoelastic properties are essential for polymeric materials in their wide applications in nanotechnology. Here we proposed a contact resonance force microscopy (CRFM) method for viscoelasticity measurements by utilizing a cantilever's higher-eigenmode (n > 3). Numerical analysis results show that, compared to its lower eigenmodes, a cantilever's higher eigenmode is more sensitive to contact damping and less affected by contact stiffness variations. This tendency is then verified by nanoscale viscoelasticity mapping on a polystyrene (PS)/polymethyl methacrylate (PMMA) copolymer thin film using a compliant cantilever's different eigenmodes. Results show that higher-eigenmode CRFM can provide better imaging contrast and is thus suggested for viscoelasticity measurements.
doi_str_mv 10.1063/1.4890837
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126574060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126574060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-aa5e99f295c0cced787fedc5ab9d56443eb9fedf726abf74c9285f0bb7fbaafe3</originalsourceid><addsrcrecordid>eNotkEFPAyEQhYnRxFo9-A9IPHnYCuyywNE0Wk2aeNEzYdmhpekuFaim_15qe5mXTL43k_cQuqdkRklbP9FZIxWRtbhAE0qkqgTn5BJNCGG0kkqoa3ST0oYQSmWtJsjOw5iNzThCCqMZLWAXYpmDtzEkG3YH_OvzGq_9ag2xAr-CcQj9P4aLoTBmC_jHFxa2JmVvfT7gAUzaRxhgzOkWXTmzTXB31in6en35nL9Vy4_F-_x5WVnGRa6M4aCUY4pbYi30QgoHveWmUz1vm6aGTpWFE6w1nRONVUxyR7pOuM4YB_UUPZzu7mL43kPKehP2cSwvNaOs5aIhLSnU44k65ksRnN5FP5h40JToY4ea6nOH9R-Vr2d8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126574060</pqid></control><display><type>article</type><title>Contact resonance force microscopy with higher-eigenmode for nanoscale viscoelasticity measurements</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhou, Xilong ; Fu, Ji ; Miao, Hongchen ; Li, Faxin</creator><creatorcontrib>Zhou, Xilong ; Fu, Ji ; Miao, Hongchen ; Li, Faxin</creatorcontrib><description>Nanoscale viscoelastic properties are essential for polymeric materials in their wide applications in nanotechnology. Here we proposed a contact resonance force microscopy (CRFM) method for viscoelasticity measurements by utilizing a cantilever's higher-eigenmode (n &gt; 3). Numerical analysis results show that, compared to its lower eigenmodes, a cantilever's higher eigenmode is more sensitive to contact damping and less affected by contact stiffness variations. This tendency is then verified by nanoscale viscoelasticity mapping on a polystyrene (PS)/polymethyl methacrylate (PMMA) copolymer thin film using a compliant cantilever's different eigenmodes. Results show that higher-eigenmode CRFM can provide better imaging contrast and is thus suggested for viscoelasticity measurements.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4890837</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Damping ; Microscopy ; Nanotechnology ; Numerical analysis ; Polymethyl methacrylate ; Polystyrene resins ; Stiffness ; Thin films ; Viscoelasticity</subject><ispartof>Journal of applied physics, 2014-07, Vol.116 (3)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-aa5e99f295c0cced787fedc5ab9d56443eb9fedf726abf74c9285f0bb7fbaafe3</citedby><cites>FETCH-LOGICAL-c257t-aa5e99f295c0cced787fedc5ab9d56443eb9fedf726abf74c9285f0bb7fbaafe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhou, Xilong</creatorcontrib><creatorcontrib>Fu, Ji</creatorcontrib><creatorcontrib>Miao, Hongchen</creatorcontrib><creatorcontrib>Li, Faxin</creatorcontrib><title>Contact resonance force microscopy with higher-eigenmode for nanoscale viscoelasticity measurements</title><title>Journal of applied physics</title><description>Nanoscale viscoelastic properties are essential for polymeric materials in their wide applications in nanotechnology. Here we proposed a contact resonance force microscopy (CRFM) method for viscoelasticity measurements by utilizing a cantilever's higher-eigenmode (n &gt; 3). Numerical analysis results show that, compared to its lower eigenmodes, a cantilever's higher eigenmode is more sensitive to contact damping and less affected by contact stiffness variations. This tendency is then verified by nanoscale viscoelasticity mapping on a polystyrene (PS)/polymethyl methacrylate (PMMA) copolymer thin film using a compliant cantilever's different eigenmodes. Results show that higher-eigenmode CRFM can provide better imaging contrast and is thus suggested for viscoelasticity measurements.</description><subject>Applied physics</subject><subject>Damping</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Numerical analysis</subject><subject>Polymethyl methacrylate</subject><subject>Polystyrene resins</subject><subject>Stiffness</subject><subject>Thin films</subject><subject>Viscoelasticity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkEFPAyEQhYnRxFo9-A9IPHnYCuyywNE0Wk2aeNEzYdmhpekuFaim_15qe5mXTL43k_cQuqdkRklbP9FZIxWRtbhAE0qkqgTn5BJNCGG0kkqoa3ST0oYQSmWtJsjOw5iNzThCCqMZLWAXYpmDtzEkG3YH_OvzGq_9ag2xAr-CcQj9P4aLoTBmC_jHFxa2JmVvfT7gAUzaRxhgzOkWXTmzTXB31in6en35nL9Vy4_F-_x5WVnGRa6M4aCUY4pbYi30QgoHveWmUz1vm6aGTpWFE6w1nRONVUxyR7pOuM4YB_UUPZzu7mL43kPKehP2cSwvNaOs5aIhLSnU44k65ksRnN5FP5h40JToY4ea6nOH9R-Vr2d8</recordid><startdate>20140721</startdate><enddate>20140721</enddate><creator>Zhou, Xilong</creator><creator>Fu, Ji</creator><creator>Miao, Hongchen</creator><creator>Li, Faxin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140721</creationdate><title>Contact resonance force microscopy with higher-eigenmode for nanoscale viscoelasticity measurements</title><author>Zhou, Xilong ; Fu, Ji ; Miao, Hongchen ; Li, Faxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-aa5e99f295c0cced787fedc5ab9d56443eb9fedf726abf74c9285f0bb7fbaafe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Damping</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Numerical analysis</topic><topic>Polymethyl methacrylate</topic><topic>Polystyrene resins</topic><topic>Stiffness</topic><topic>Thin films</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xilong</creatorcontrib><creatorcontrib>Fu, Ji</creatorcontrib><creatorcontrib>Miao, Hongchen</creatorcontrib><creatorcontrib>Li, Faxin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xilong</au><au>Fu, Ji</au><au>Miao, Hongchen</au><au>Li, Faxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact resonance force microscopy with higher-eigenmode for nanoscale viscoelasticity measurements</atitle><jtitle>Journal of applied physics</jtitle><date>2014-07-21</date><risdate>2014</risdate><volume>116</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Nanoscale viscoelastic properties are essential for polymeric materials in their wide applications in nanotechnology. Here we proposed a contact resonance force microscopy (CRFM) method for viscoelasticity measurements by utilizing a cantilever's higher-eigenmode (n &gt; 3). Numerical analysis results show that, compared to its lower eigenmodes, a cantilever's higher eigenmode is more sensitive to contact damping and less affected by contact stiffness variations. This tendency is then verified by nanoscale viscoelasticity mapping on a polystyrene (PS)/polymethyl methacrylate (PMMA) copolymer thin film using a compliant cantilever's different eigenmodes. Results show that higher-eigenmode CRFM can provide better imaging contrast and is thus suggested for viscoelasticity measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4890837</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-07, Vol.116 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2126574060
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Damping
Microscopy
Nanotechnology
Numerical analysis
Polymethyl methacrylate
Polystyrene resins
Stiffness
Thin films
Viscoelasticity
title Contact resonance force microscopy with higher-eigenmode for nanoscale viscoelasticity measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact%20resonance%20force%20microscopy%20with%20higher-eigenmode%20for%20nanoscale%20viscoelasticity%20measurements&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhou,%20Xilong&rft.date=2014-07-21&rft.volume=116&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4890837&rft_dat=%3Cproquest_cross%3E2126574060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126574060&rft_id=info:pmid/&rfr_iscdi=true