Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories
The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-08, Vol.105 (7) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 105 |
creator | Sharath, S U Kurian, J Komissinskiy, P Hildebrandt, E Bertaud, T Walczyk, C Calka, P Alff, L |
description | The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO2 surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir. |
doi_str_mv | 10.1063/1.4893605 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126567819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126567819</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-14731f62e136994063fa16680f1c937ad127f6512b56082ccb1d889bd94624e3</originalsourceid><addsrcrecordid>eNotT8tOwzAQtBBIhMKBP7DEOcVrJ459RBVQpEq95F7lsU4dGjvESYG_xwguMzvSzKyGkHtga2BSPMI6U1pIll-QBFhRpAJAXZKEMSZSqXO4Jjch9FHmXIiE9OXRNu8OQ6DWtThiBDfTCdulwZYaPw3WdfTsT3PVYfRQ__XdoaPoOusQo5FuzZ7TugrxnDDYMNsz0vBp5-b4mx1w8JPFcEuuTHUKePfPK1K-PJebbbrbv75tnnbpCCDmFLJCgJEcQUitszjKVCClYgYaLYqqBV4YmQOvc8kUb5oaWqV03epM8gzFijz81Y6T_1gwzIfeL5OLHw8cuMxloUCLH68IWHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126567819</pqid></control><display><type>article</type><title>Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sharath, S U ; Kurian, J ; Komissinskiy, P ; Hildebrandt, E ; Bertaud, T ; Walczyk, C ; Calka, P ; Alff, L</creator><creatorcontrib>Sharath, S U ; Kurian, J ; Komissinskiy, P ; Hildebrandt, E ; Bertaud, T ; Walczyk, C ; Calka, P ; Alff, L</creatorcontrib><description>The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO2 surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4893605</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Dependence ; Electric potential ; Hafnium oxide ; Oxygen ; Rapid prototyping ; Silicon substrates ; Surface layers ; Switching ; Thickness ; Thin films</subject><ispartof>Applied physics letters, 2014-08, Vol.105 (7)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharath, S U</creatorcontrib><creatorcontrib>Kurian, J</creatorcontrib><creatorcontrib>Komissinskiy, P</creatorcontrib><creatorcontrib>Hildebrandt, E</creatorcontrib><creatorcontrib>Bertaud, T</creatorcontrib><creatorcontrib>Walczyk, C</creatorcontrib><creatorcontrib>Calka, P</creatorcontrib><creatorcontrib>Alff, L</creatorcontrib><title>Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories</title><title>Applied physics letters</title><description>The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO2 surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.</description><subject>Applied physics</subject><subject>Dependence</subject><subject>Electric potential</subject><subject>Hafnium oxide</subject><subject>Oxygen</subject><subject>Rapid prototyping</subject><subject>Silicon substrates</subject><subject>Surface layers</subject><subject>Switching</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotT8tOwzAQtBBIhMKBP7DEOcVrJ459RBVQpEq95F7lsU4dGjvESYG_xwguMzvSzKyGkHtga2BSPMI6U1pIll-QBFhRpAJAXZKEMSZSqXO4Jjch9FHmXIiE9OXRNu8OQ6DWtThiBDfTCdulwZYaPw3WdfTsT3PVYfRQ__XdoaPoOusQo5FuzZ7TugrxnDDYMNsz0vBp5-b4mx1w8JPFcEuuTHUKePfPK1K-PJebbbrbv75tnnbpCCDmFLJCgJEcQUitszjKVCClYgYaLYqqBV4YmQOvc8kUb5oaWqV03epM8gzFijz81Y6T_1gwzIfeL5OLHw8cuMxloUCLH68IWHE</recordid><startdate>20140818</startdate><enddate>20140818</enddate><creator>Sharath, S U</creator><creator>Kurian, J</creator><creator>Komissinskiy, P</creator><creator>Hildebrandt, E</creator><creator>Bertaud, T</creator><creator>Walczyk, C</creator><creator>Calka, P</creator><creator>Alff, L</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140818</creationdate><title>Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories</title><author>Sharath, S U ; Kurian, J ; Komissinskiy, P ; Hildebrandt, E ; Bertaud, T ; Walczyk, C ; Calka, P ; Alff, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-14731f62e136994063fa16680f1c937ad127f6512b56082ccb1d889bd94624e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Dependence</topic><topic>Electric potential</topic><topic>Hafnium oxide</topic><topic>Oxygen</topic><topic>Rapid prototyping</topic><topic>Silicon substrates</topic><topic>Surface layers</topic><topic>Switching</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharath, S U</creatorcontrib><creatorcontrib>Kurian, J</creatorcontrib><creatorcontrib>Komissinskiy, P</creatorcontrib><creatorcontrib>Hildebrandt, E</creatorcontrib><creatorcontrib>Bertaud, T</creatorcontrib><creatorcontrib>Walczyk, C</creatorcontrib><creatorcontrib>Calka, P</creatorcontrib><creatorcontrib>Alff, L</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharath, S U</au><au>Kurian, J</au><au>Komissinskiy, P</au><au>Hildebrandt, E</au><au>Bertaud, T</au><au>Walczyk, C</au><au>Calka, P</au><au>Alff, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories</atitle><jtitle>Applied physics letters</jtitle><date>2014-08-18</date><risdate>2014</risdate><volume>105</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO2 surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4893605</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-08, Vol.105 (7) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2126567819 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Dependence Electric potential Hafnium oxide Oxygen Rapid prototyping Silicon substrates Surface layers Switching Thickness Thin films |
title | Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness%20independent%20reduced%20forming%20voltage%20in%20oxygen%20engineered%20HfO2%20based%20resistive%20switching%20memories&rft.jtitle=Applied%20physics%20letters&rft.au=Sharath,%20S%20U&rft.date=2014-08-18&rft.volume=105&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4893605&rft_dat=%3Cproquest%3E2126567819%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126567819&rft_id=info:pmid/&rfr_iscdi=true |