Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories

The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-08, Vol.105 (7)
Hauptverfasser: Sharath, S U, Kurian, J, Komissinskiy, P, Hildebrandt, E, Bertaud, T, Walczyk, C, Calka, P, Alff, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 105
creator Sharath, S U
Kurian, J
Komissinskiy, P
Hildebrandt, E
Bertaud, T
Walczyk, C
Calka, P
Alff, L
description The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO2 surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.
doi_str_mv 10.1063/1.4893605
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126567819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126567819</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-14731f62e136994063fa16680f1c937ad127f6512b56082ccb1d889bd94624e3</originalsourceid><addsrcrecordid>eNotT8tOwzAQtBBIhMKBP7DEOcVrJ459RBVQpEq95F7lsU4dGjvESYG_xwguMzvSzKyGkHtga2BSPMI6U1pIll-QBFhRpAJAXZKEMSZSqXO4Jjch9FHmXIiE9OXRNu8OQ6DWtThiBDfTCdulwZYaPw3WdfTsT3PVYfRQ__XdoaPoOusQo5FuzZ7TugrxnDDYMNsz0vBp5-b4mx1w8JPFcEuuTHUKePfPK1K-PJebbbrbv75tnnbpCCDmFLJCgJEcQUitszjKVCClYgYaLYqqBV4YmQOvc8kUb5oaWqV03epM8gzFijz81Y6T_1gwzIfeL5OLHw8cuMxloUCLH68IWHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126567819</pqid></control><display><type>article</type><title>Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sharath, S U ; Kurian, J ; Komissinskiy, P ; Hildebrandt, E ; Bertaud, T ; Walczyk, C ; Calka, P ; Alff, L</creator><creatorcontrib>Sharath, S U ; Kurian, J ; Komissinskiy, P ; Hildebrandt, E ; Bertaud, T ; Walczyk, C ; Calka, P ; Alff, L</creatorcontrib><description>The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO2 surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4893605</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Dependence ; Electric potential ; Hafnium oxide ; Oxygen ; Rapid prototyping ; Silicon substrates ; Surface layers ; Switching ; Thickness ; Thin films</subject><ispartof>Applied physics letters, 2014-08, Vol.105 (7)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharath, S U</creatorcontrib><creatorcontrib>Kurian, J</creatorcontrib><creatorcontrib>Komissinskiy, P</creatorcontrib><creatorcontrib>Hildebrandt, E</creatorcontrib><creatorcontrib>Bertaud, T</creatorcontrib><creatorcontrib>Walczyk, C</creatorcontrib><creatorcontrib>Calka, P</creatorcontrib><creatorcontrib>Alff, L</creatorcontrib><title>Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories</title><title>Applied physics letters</title><description>The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO2 surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.</description><subject>Applied physics</subject><subject>Dependence</subject><subject>Electric potential</subject><subject>Hafnium oxide</subject><subject>Oxygen</subject><subject>Rapid prototyping</subject><subject>Silicon substrates</subject><subject>Surface layers</subject><subject>Switching</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotT8tOwzAQtBBIhMKBP7DEOcVrJ459RBVQpEq95F7lsU4dGjvESYG_xwguMzvSzKyGkHtga2BSPMI6U1pIll-QBFhRpAJAXZKEMSZSqXO4Jjch9FHmXIiE9OXRNu8OQ6DWtThiBDfTCdulwZYaPw3WdfTsT3PVYfRQ__XdoaPoOusQo5FuzZ7TugrxnDDYMNsz0vBp5-b4mx1w8JPFcEuuTHUKePfPK1K-PJebbbrbv75tnnbpCCDmFLJCgJEcQUitszjKVCClYgYaLYqqBV4YmQOvc8kUb5oaWqV03epM8gzFijz81Y6T_1gwzIfeL5OLHw8cuMxloUCLH68IWHE</recordid><startdate>20140818</startdate><enddate>20140818</enddate><creator>Sharath, S U</creator><creator>Kurian, J</creator><creator>Komissinskiy, P</creator><creator>Hildebrandt, E</creator><creator>Bertaud, T</creator><creator>Walczyk, C</creator><creator>Calka, P</creator><creator>Alff, L</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140818</creationdate><title>Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories</title><author>Sharath, S U ; Kurian, J ; Komissinskiy, P ; Hildebrandt, E ; Bertaud, T ; Walczyk, C ; Calka, P ; Alff, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-14731f62e136994063fa16680f1c937ad127f6512b56082ccb1d889bd94624e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Dependence</topic><topic>Electric potential</topic><topic>Hafnium oxide</topic><topic>Oxygen</topic><topic>Rapid prototyping</topic><topic>Silicon substrates</topic><topic>Surface layers</topic><topic>Switching</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharath, S U</creatorcontrib><creatorcontrib>Kurian, J</creatorcontrib><creatorcontrib>Komissinskiy, P</creatorcontrib><creatorcontrib>Hildebrandt, E</creatorcontrib><creatorcontrib>Bertaud, T</creatorcontrib><creatorcontrib>Walczyk, C</creatorcontrib><creatorcontrib>Calka, P</creatorcontrib><creatorcontrib>Alff, L</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharath, S U</au><au>Kurian, J</au><au>Komissinskiy, P</au><au>Hildebrandt, E</au><au>Bertaud, T</au><au>Walczyk, C</au><au>Calka, P</au><au>Alff, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories</atitle><jtitle>Applied physics letters</jtitle><date>2014-08-18</date><risdate>2014</risdate><volume>105</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO2 surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4893605</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2014-08, Vol.105 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2126567819
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Dependence
Electric potential
Hafnium oxide
Oxygen
Rapid prototyping
Silicon substrates
Surface layers
Switching
Thickness
Thin films
title Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness%20independent%20reduced%20forming%20voltage%20in%20oxygen%20engineered%20HfO2%20based%20resistive%20switching%20memories&rft.jtitle=Applied%20physics%20letters&rft.au=Sharath,%20S%20U&rft.date=2014-08-18&rft.volume=105&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4893605&rft_dat=%3Cproquest%3E2126567819%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126567819&rft_id=info:pmid/&rfr_iscdi=true