Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices
The optical transmission at a fixed visible wavelength of Bi nanoparticles embedded in a dielectric is known to show a sharp hysteretic evolution as a function of the temperature due to the reversible melting-solidification of the nanoparticles. In this work, we explore the temperature-dependent opt...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-09, Vol.105 (11), p.113102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optical transmission at a fixed visible wavelength of Bi nanoparticles embedded in a dielectric is known to show a sharp hysteretic evolution as a function of the temperature due to the reversible melting-solidification of the nanoparticles. In this work, we explore the temperature-dependent optical response of Bi nanoparticles embedded in a doped germanate glass (GeO2-Al2O3-Na2O) in a broad range from the visible to the near infrared. The transmission contrast induced by melting of the nanoparticles is shown to be strongly wavelength-dependent and evolves from positive to negative as the wavelength increases. This behaviour is well modelled using effective medium calculations, assuming that the nanoparticles size, shape, and distribution are unmodified upon melting, while their dielectric function turns from that of solid Bi to that of liquid Bi thus modifying markedly their optical response. These results open a route to the spectral tailoring of the thermo-optical response of Bi nanoparticles-based materials, which can be profitable for the engineering of wavelength-selective thermo-optical modulators and filters with optimized amplitude of modulation and wavelength dependence. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4895808 |