Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system

We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-02, Vol.97 (4), Article 044053
Hauptverfasser: Maliborski, Maciej, Rinne, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. D
container_volume 97
creator Maliborski, Maciej
Rinne, Oliver
description We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional “type III” critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.
doi_str_mv 10.1103/PhysRevD.97.044053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126563875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126563875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-ab0244d9b8299079fcd535d34079baf1ee4df4b2b334ce940d13a78dffd91eca3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWGr_AU8LnrdOPrZpjlLrB1SUogdPIbs7aVN2szXZCvvfm1L1NL-Z95gHj5BrClNKgd--bYe4xu_7qZJTEAIKfkZGTEjIAZg6_2cKl2QS4w4SzkBJSkdkvQiud5Vpsv0WfdeiN5nzWb_FbIMeQxJiUsLR0gxZHNoW-7RlS-djj87nn8Zv8hfXNDGp6dRekQtrmoiT3zkmHw_L98VTvnp9fF7crfKKyaLPTQlMiFqVc6YUSGWruuBFzUXi0liKKGorSlZyLipUAmrKjZzX1taKYmX4mNyc_u5D93XA2Otddwg-RWpG2ayY8bkskoudXFXoYgxo9T641oRBU9DH-vRffVpJfaqP_wDIUGXW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126563875</pqid></control><display><type>article</type><title>Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system</title><source>American Physical Society Journals</source><creator>Maliborski, Maciej ; Rinne, Oliver</creator><creatorcontrib>Maliborski, Maciej ; Rinne, Oliver</creatorcontrib><description>We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional “type III” critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.97.044053</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Computer simulation ; Critical phenomena ; Einstein equations ; Gravitational collapse ; Magnetic sectors ; Perturbation methods ; Perturbation theory ; Phenomenology ; Self-similarity ; Symmetry ; Yang-Mills fields</subject><ispartof>Physical review. D, 2018-02, Vol.97 (4), Article 044053</ispartof><rights>Copyright American Physical Society Feb 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-ab0244d9b8299079fcd535d34079baf1ee4df4b2b334ce940d13a78dffd91eca3</citedby><cites>FETCH-LOGICAL-c275t-ab0244d9b8299079fcd535d34079baf1ee4df4b2b334ce940d13a78dffd91eca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Maliborski, Maciej</creatorcontrib><creatorcontrib>Rinne, Oliver</creatorcontrib><title>Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system</title><title>Physical review. D</title><description>We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional “type III” critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.</description><subject>Black holes</subject><subject>Computer simulation</subject><subject>Critical phenomena</subject><subject>Einstein equations</subject><subject>Gravitational collapse</subject><subject>Magnetic sectors</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Phenomenology</subject><subject>Self-similarity</subject><subject>Symmetry</subject><subject>Yang-Mills fields</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWGr_AU8LnrdOPrZpjlLrB1SUogdPIbs7aVN2szXZCvvfm1L1NL-Z95gHj5BrClNKgd--bYe4xu_7qZJTEAIKfkZGTEjIAZg6_2cKl2QS4w4SzkBJSkdkvQiud5Vpsv0WfdeiN5nzWb_FbIMeQxJiUsLR0gxZHNoW-7RlS-djj87nn8Zv8hfXNDGp6dRekQtrmoiT3zkmHw_L98VTvnp9fF7crfKKyaLPTQlMiFqVc6YUSGWruuBFzUXi0liKKGorSlZyLipUAmrKjZzX1taKYmX4mNyc_u5D93XA2Otddwg-RWpG2ayY8bkskoudXFXoYgxo9T641oRBU9DH-vRffVpJfaqP_wDIUGXW</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Maliborski, Maciej</creator><creator>Rinne, Oliver</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180228</creationdate><title>Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system</title><author>Maliborski, Maciej ; Rinne, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-ab0244d9b8299079fcd535d34079baf1ee4df4b2b334ce940d13a78dffd91eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Black holes</topic><topic>Computer simulation</topic><topic>Critical phenomena</topic><topic>Einstein equations</topic><topic>Gravitational collapse</topic><topic>Magnetic sectors</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Phenomenology</topic><topic>Self-similarity</topic><topic>Symmetry</topic><topic>Yang-Mills fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maliborski, Maciej</creatorcontrib><creatorcontrib>Rinne, Oliver</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maliborski, Maciej</au><au>Rinne, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system</atitle><jtitle>Physical review. D</jtitle><date>2018-02-28</date><risdate>2018</risdate><volume>97</volume><issue>4</issue><artnum>044053</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional “type III” critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.97.044053</doi></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2018-02, Vol.97 (4), Article 044053
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2126563875
source American Physical Society Journals
subjects Black holes
Computer simulation
Critical phenomena
Einstein equations
Gravitational collapse
Magnetic sectors
Perturbation methods
Perturbation theory
Phenomenology
Self-similarity
Symmetry
Yang-Mills fields
title Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20phenomena%20in%20the%20general%20spherically%20symmetric%20Einstein-Yang-Mills%20system&rft.jtitle=Physical%20review.%20D&rft.au=Maliborski,%20Maciej&rft.date=2018-02-28&rft.volume=97&rft.issue=4&rft.artnum=044053&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.97.044053&rft_dat=%3Cproquest_cross%3E2126563875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126563875&rft_id=info:pmid/&rfr_iscdi=true