Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system
We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact change...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-02, Vol.97 (4), Article 044053 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physical review. D |
container_volume | 97 |
creator | Maliborski, Maciej Rinne, Oliver |
description | We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional “type III” critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector. |
doi_str_mv | 10.1103/PhysRevD.97.044053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126563875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126563875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-ab0244d9b8299079fcd535d34079baf1ee4df4b2b334ce940d13a78dffd91eca3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWGr_AU8LnrdOPrZpjlLrB1SUogdPIbs7aVN2szXZCvvfm1L1NL-Z95gHj5BrClNKgd--bYe4xu_7qZJTEAIKfkZGTEjIAZg6_2cKl2QS4w4SzkBJSkdkvQiud5Vpsv0WfdeiN5nzWb_FbIMeQxJiUsLR0gxZHNoW-7RlS-djj87nn8Zv8hfXNDGp6dRekQtrmoiT3zkmHw_L98VTvnp9fF7crfKKyaLPTQlMiFqVc6YUSGWruuBFzUXi0liKKGorSlZyLipUAmrKjZzX1taKYmX4mNyc_u5D93XA2Otddwg-RWpG2ayY8bkskoudXFXoYgxo9T641oRBU9DH-vRffVpJfaqP_wDIUGXW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126563875</pqid></control><display><type>article</type><title>Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system</title><source>American Physical Society Journals</source><creator>Maliborski, Maciej ; Rinne, Oliver</creator><creatorcontrib>Maliborski, Maciej ; Rinne, Oliver</creatorcontrib><description>We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional “type III” critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.97.044053</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Computer simulation ; Critical phenomena ; Einstein equations ; Gravitational collapse ; Magnetic sectors ; Perturbation methods ; Perturbation theory ; Phenomenology ; Self-similarity ; Symmetry ; Yang-Mills fields</subject><ispartof>Physical review. D, 2018-02, Vol.97 (4), Article 044053</ispartof><rights>Copyright American Physical Society Feb 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-ab0244d9b8299079fcd535d34079baf1ee4df4b2b334ce940d13a78dffd91eca3</citedby><cites>FETCH-LOGICAL-c275t-ab0244d9b8299079fcd535d34079baf1ee4df4b2b334ce940d13a78dffd91eca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Maliborski, Maciej</creatorcontrib><creatorcontrib>Rinne, Oliver</creatorcontrib><title>Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system</title><title>Physical review. D</title><description>We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional “type III” critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.</description><subject>Black holes</subject><subject>Computer simulation</subject><subject>Critical phenomena</subject><subject>Einstein equations</subject><subject>Gravitational collapse</subject><subject>Magnetic sectors</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Phenomenology</subject><subject>Self-similarity</subject><subject>Symmetry</subject><subject>Yang-Mills fields</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWGr_AU8LnrdOPrZpjlLrB1SUogdPIbs7aVN2szXZCvvfm1L1NL-Z95gHj5BrClNKgd--bYe4xu_7qZJTEAIKfkZGTEjIAZg6_2cKl2QS4w4SzkBJSkdkvQiud5Vpsv0WfdeiN5nzWb_FbIMeQxJiUsLR0gxZHNoW-7RlS-djj87nn8Zv8hfXNDGp6dRekQtrmoiT3zkmHw_L98VTvnp9fF7crfKKyaLPTQlMiFqVc6YUSGWruuBFzUXi0liKKGorSlZyLipUAmrKjZzX1taKYmX4mNyc_u5D93XA2Otddwg-RWpG2ayY8bkskoudXFXoYgxo9T641oRBU9DH-vRffVpJfaqP_wDIUGXW</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Maliborski, Maciej</creator><creator>Rinne, Oliver</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180228</creationdate><title>Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system</title><author>Maliborski, Maciej ; Rinne, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-ab0244d9b8299079fcd535d34079baf1ee4df4b2b334ce940d13a78dffd91eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Black holes</topic><topic>Computer simulation</topic><topic>Critical phenomena</topic><topic>Einstein equations</topic><topic>Gravitational collapse</topic><topic>Magnetic sectors</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Phenomenology</topic><topic>Self-similarity</topic><topic>Symmetry</topic><topic>Yang-Mills fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maliborski, Maciej</creatorcontrib><creatorcontrib>Rinne, Oliver</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maliborski, Maciej</au><au>Rinne, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system</atitle><jtitle>Physical review. D</jtitle><date>2018-02-28</date><risdate>2018</risdate><volume>97</volume><issue>4</issue><artnum>044053</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional “type III” critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.97.044053</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2018-02, Vol.97 (4), Article 044053 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2126563875 |
source | American Physical Society Journals |
subjects | Black holes Computer simulation Critical phenomena Einstein equations Gravitational collapse Magnetic sectors Perturbation methods Perturbation theory Phenomenology Self-similarity Symmetry Yang-Mills fields |
title | Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20phenomena%20in%20the%20general%20spherically%20symmetric%20Einstein-Yang-Mills%20system&rft.jtitle=Physical%20review.%20D&rft.au=Maliborski,%20Maciej&rft.date=2018-02-28&rft.volume=97&rft.issue=4&rft.artnum=044053&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.97.044053&rft_dat=%3Cproquest_cross%3E2126563875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126563875&rft_id=info:pmid/&rfr_iscdi=true |