Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters
Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot nois...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-06, Vol.97 (12), Article 124060 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physical review. D |
container_volume | 97 |
creator | Page, Michael Qin, Jiayi La Fontaine, James Zhao, Chunnong Ju, Li Blair, David |
description | Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot noise at high frequencies. Squeezed vacuum injection has been shown to allow broadband sensitivity improvement, but this technique does not change the slope of the noise at high frequency. It has been shown that white light signal recycling using negative dispersion optomechanical filter cavities with strong optical dilution for thermal noise suppression can in principle allow broadband high frequency sensitivity improvement. Here we present detailed modeling of AlGaAs/GaAs optomechanical filters to identify the available parameter space in which such filters can achieve the low thermal noise required to allow useful sensitivity improvement at high frequency. Material losses, the resolved sideband condition and internal acoustic modes dictate the need for resonators substantially smaller than previously suggested. We identify suitable resonator dimensions and show that a 30 μm scale cat-flap resonator combined with optical squeezing allows 8 fold improvement of strain sensitivity at 2 kHz compared with Advanced LIGO. This corresponds to a detection volume increase of a factor of 500 for sources in this frequency range. |
doi_str_mv | 10.1103/PhysRevD.97.124060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126557480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126557480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-caf0a6c606b54b8677cfabfdc46b105217a559fdcefba393678ebba0666c3b2c3</originalsourceid><addsrcrecordid>eNo9UN9LwzAYDKLg0P0DPgV87vyStsn6KHP-gIEi-hySNGkzunYm6aT_vRlTn7777o7jOIRuCCwIgfzurZ3Cuzk8LCq-ILQABmdoRgsOGQCtzv8xgUs0D2ELCTKoOCEz1Kz7Vvba1Lg20ejohh4PFreuabH15ms0vZ5w4-XBRXlUZYe_5cEEPAbXN3jYR6dl1024dt0YU05ihp3RKfUoYOu6aHy4RhdWdsHMf-8V-nxcf6yes83r08vqfpNpysuYaWlBMs2AqbJQS8a5tlLZWhdMESgp4bIsq_Qbq2Re5YwvjVISGGM6V1TnV-j2lLv3QyofotgOo0-tg6CEsrLkxRKSi55c2g8heGPF3rud9JMgII6bir9NRcXFadP8B72WbsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126557480</pqid></control><display><type>article</type><title>Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters</title><source>American Physical Society Journals</source><creator>Page, Michael ; Qin, Jiayi ; La Fontaine, James ; Zhao, Chunnong ; Ju, Li ; Blair, David</creator><creatorcontrib>Page, Michael ; Qin, Jiayi ; La Fontaine, James ; Zhao, Chunnong ; Ju, Li ; Blair, David</creatorcontrib><description>Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot noise at high frequencies. Squeezed vacuum injection has been shown to allow broadband sensitivity improvement, but this technique does not change the slope of the noise at high frequency. It has been shown that white light signal recycling using negative dispersion optomechanical filter cavities with strong optical dilution for thermal noise suppression can in principle allow broadband high frequency sensitivity improvement. Here we present detailed modeling of AlGaAs/GaAs optomechanical filters to identify the available parameter space in which such filters can achieve the low thermal noise required to allow useful sensitivity improvement at high frequency. Material losses, the resolved sideband condition and internal acoustic modes dictate the need for resonators substantially smaller than previously suggested. We identify suitable resonator dimensions and show that a 30 μm scale cat-flap resonator combined with optical squeezing allows 8 fold improvement of strain sensitivity at 2 kHz compared with Advanced LIGO. This corresponds to a detection volume increase of a factor of 500 for sources in this frequency range.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.97.124060</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Acoustic noise ; Astronomy ; Black holes ; Broadband ; Dilution ; Gravitation ; Gravitational waves ; High frequencies ; Noise ; Parameter identification ; Resonators ; Sensitivity ; Shot noise ; Thermal noise ; Wave filters ; White light</subject><ispartof>Physical review. D, 2018-06, Vol.97 (12), Article 124060</ispartof><rights>Copyright American Physical Society Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-caf0a6c606b54b8677cfabfdc46b105217a559fdcefba393678ebba0666c3b2c3</citedby><cites>FETCH-LOGICAL-c275t-caf0a6c606b54b8677cfabfdc46b105217a559fdcefba393678ebba0666c3b2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids></links><search><creatorcontrib>Page, Michael</creatorcontrib><creatorcontrib>Qin, Jiayi</creatorcontrib><creatorcontrib>La Fontaine, James</creatorcontrib><creatorcontrib>Zhao, Chunnong</creatorcontrib><creatorcontrib>Ju, Li</creatorcontrib><creatorcontrib>Blair, David</creatorcontrib><title>Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters</title><title>Physical review. D</title><description>Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot noise at high frequencies. Squeezed vacuum injection has been shown to allow broadband sensitivity improvement, but this technique does not change the slope of the noise at high frequency. It has been shown that white light signal recycling using negative dispersion optomechanical filter cavities with strong optical dilution for thermal noise suppression can in principle allow broadband high frequency sensitivity improvement. Here we present detailed modeling of AlGaAs/GaAs optomechanical filters to identify the available parameter space in which such filters can achieve the low thermal noise required to allow useful sensitivity improvement at high frequency. Material losses, the resolved sideband condition and internal acoustic modes dictate the need for resonators substantially smaller than previously suggested. We identify suitable resonator dimensions and show that a 30 μm scale cat-flap resonator combined with optical squeezing allows 8 fold improvement of strain sensitivity at 2 kHz compared with Advanced LIGO. This corresponds to a detection volume increase of a factor of 500 for sources in this frequency range.</description><subject>Acoustic noise</subject><subject>Astronomy</subject><subject>Black holes</subject><subject>Broadband</subject><subject>Dilution</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>High frequencies</subject><subject>Noise</subject><subject>Parameter identification</subject><subject>Resonators</subject><subject>Sensitivity</subject><subject>Shot noise</subject><subject>Thermal noise</subject><subject>Wave filters</subject><subject>White light</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UN9LwzAYDKLg0P0DPgV87vyStsn6KHP-gIEi-hySNGkzunYm6aT_vRlTn7777o7jOIRuCCwIgfzurZ3Cuzk8LCq-ILQABmdoRgsOGQCtzv8xgUs0D2ELCTKoOCEz1Kz7Vvba1Lg20ejohh4PFreuabH15ms0vZ5w4-XBRXlUZYe_5cEEPAbXN3jYR6dl1024dt0YU05ihp3RKfUoYOu6aHy4RhdWdsHMf-8V-nxcf6yes83r08vqfpNpysuYaWlBMs2AqbJQS8a5tlLZWhdMESgp4bIsq_Qbq2Re5YwvjVISGGM6V1TnV-j2lLv3QyofotgOo0-tg6CEsrLkxRKSi55c2g8heGPF3rud9JMgII6bir9NRcXFadP8B72WbsU</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Page, Michael</creator><creator>Qin, Jiayi</creator><creator>La Fontaine, James</creator><creator>Zhao, Chunnong</creator><creator>Ju, Li</creator><creator>Blair, David</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180615</creationdate><title>Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters</title><author>Page, Michael ; Qin, Jiayi ; La Fontaine, James ; Zhao, Chunnong ; Ju, Li ; Blair, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-caf0a6c606b54b8677cfabfdc46b105217a559fdcefba393678ebba0666c3b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic noise</topic><topic>Astronomy</topic><topic>Black holes</topic><topic>Broadband</topic><topic>Dilution</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>High frequencies</topic><topic>Noise</topic><topic>Parameter identification</topic><topic>Resonators</topic><topic>Sensitivity</topic><topic>Shot noise</topic><topic>Thermal noise</topic><topic>Wave filters</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page, Michael</creatorcontrib><creatorcontrib>Qin, Jiayi</creatorcontrib><creatorcontrib>La Fontaine, James</creatorcontrib><creatorcontrib>Zhao, Chunnong</creatorcontrib><creatorcontrib>Ju, Li</creatorcontrib><creatorcontrib>Blair, David</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page, Michael</au><au>Qin, Jiayi</au><au>La Fontaine, James</au><au>Zhao, Chunnong</au><au>Ju, Li</au><au>Blair, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters</atitle><jtitle>Physical review. D</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>97</volume><issue>12</issue><artnum>124060</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot noise at high frequencies. Squeezed vacuum injection has been shown to allow broadband sensitivity improvement, but this technique does not change the slope of the noise at high frequency. It has been shown that white light signal recycling using negative dispersion optomechanical filter cavities with strong optical dilution for thermal noise suppression can in principle allow broadband high frequency sensitivity improvement. Here we present detailed modeling of AlGaAs/GaAs optomechanical filters to identify the available parameter space in which such filters can achieve the low thermal noise required to allow useful sensitivity improvement at high frequency. Material losses, the resolved sideband condition and internal acoustic modes dictate the need for resonators substantially smaller than previously suggested. We identify suitable resonator dimensions and show that a 30 μm scale cat-flap resonator combined with optical squeezing allows 8 fold improvement of strain sensitivity at 2 kHz compared with Advanced LIGO. This corresponds to a detection volume increase of a factor of 500 for sources in this frequency range.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.97.124060</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2018-06, Vol.97 (12), Article 124060 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2126557480 |
source | American Physical Society Journals |
subjects | Acoustic noise Astronomy Black holes Broadband Dilution Gravitation Gravitational waves High frequencies Noise Parameter identification Resonators Sensitivity Shot noise Thermal noise Wave filters White light |
title | Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20detection%20of%20high%20frequency%20gravitational%20waves%20using%20optically%20diluted%20optomechanical%20filters&rft.jtitle=Physical%20review.%20D&rft.au=Page,%20Michael&rft.date=2018-06-15&rft.volume=97&rft.issue=12&rft.artnum=124060&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.97.124060&rft_dat=%3Cproquest_cross%3E2126557480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126557480&rft_id=info:pmid/&rfr_iscdi=true |