Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters

Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot nois...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-06, Vol.97 (12), Article 124060
Hauptverfasser: Page, Michael, Qin, Jiayi, La Fontaine, James, Zhao, Chunnong, Ju, Li, Blair, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physical review. D
container_volume 97
creator Page, Michael
Qin, Jiayi
La Fontaine, James
Zhao, Chunnong
Ju, Li
Blair, David
description Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot noise at high frequencies. Squeezed vacuum injection has been shown to allow broadband sensitivity improvement, but this technique does not change the slope of the noise at high frequency. It has been shown that white light signal recycling using negative dispersion optomechanical filter cavities with strong optical dilution for thermal noise suppression can in principle allow broadband high frequency sensitivity improvement. Here we present detailed modeling of AlGaAs/GaAs optomechanical filters to identify the available parameter space in which such filters can achieve the low thermal noise required to allow useful sensitivity improvement at high frequency. Material losses, the resolved sideband condition and internal acoustic modes dictate the need for resonators substantially smaller than previously suggested. We identify suitable resonator dimensions and show that a 30  μm scale cat-flap resonator combined with optical squeezing allows 8 fold improvement of strain sensitivity at 2 kHz compared with Advanced LIGO. This corresponds to a detection volume increase of a factor of 500 for sources in this frequency range.
doi_str_mv 10.1103/PhysRevD.97.124060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126557480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126557480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-caf0a6c606b54b8677cfabfdc46b105217a559fdcefba393678ebba0666c3b2c3</originalsourceid><addsrcrecordid>eNo9UN9LwzAYDKLg0P0DPgV87vyStsn6KHP-gIEi-hySNGkzunYm6aT_vRlTn7777o7jOIRuCCwIgfzurZ3Cuzk8LCq-ILQABmdoRgsOGQCtzv8xgUs0D2ELCTKoOCEz1Kz7Vvba1Lg20ejohh4PFreuabH15ms0vZ5w4-XBRXlUZYe_5cEEPAbXN3jYR6dl1024dt0YU05ihp3RKfUoYOu6aHy4RhdWdsHMf-8V-nxcf6yes83r08vqfpNpysuYaWlBMs2AqbJQS8a5tlLZWhdMESgp4bIsq_Qbq2Re5YwvjVISGGM6V1TnV-j2lLv3QyofotgOo0-tg6CEsrLkxRKSi55c2g8heGPF3rud9JMgII6bir9NRcXFadP8B72WbsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126557480</pqid></control><display><type>article</type><title>Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters</title><source>American Physical Society Journals</source><creator>Page, Michael ; Qin, Jiayi ; La Fontaine, James ; Zhao, Chunnong ; Ju, Li ; Blair, David</creator><creatorcontrib>Page, Michael ; Qin, Jiayi ; La Fontaine, James ; Zhao, Chunnong ; Ju, Li ; Blair, David</creatorcontrib><description>Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot noise at high frequencies. Squeezed vacuum injection has been shown to allow broadband sensitivity improvement, but this technique does not change the slope of the noise at high frequency. It has been shown that white light signal recycling using negative dispersion optomechanical filter cavities with strong optical dilution for thermal noise suppression can in principle allow broadband high frequency sensitivity improvement. Here we present detailed modeling of AlGaAs/GaAs optomechanical filters to identify the available parameter space in which such filters can achieve the low thermal noise required to allow useful sensitivity improvement at high frequency. Material losses, the resolved sideband condition and internal acoustic modes dictate the need for resonators substantially smaller than previously suggested. We identify suitable resonator dimensions and show that a 30  μm scale cat-flap resonator combined with optical squeezing allows 8 fold improvement of strain sensitivity at 2 kHz compared with Advanced LIGO. This corresponds to a detection volume increase of a factor of 500 for sources in this frequency range.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.97.124060</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Acoustic noise ; Astronomy ; Black holes ; Broadband ; Dilution ; Gravitation ; Gravitational waves ; High frequencies ; Noise ; Parameter identification ; Resonators ; Sensitivity ; Shot noise ; Thermal noise ; Wave filters ; White light</subject><ispartof>Physical review. D, 2018-06, Vol.97 (12), Article 124060</ispartof><rights>Copyright American Physical Society Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-caf0a6c606b54b8677cfabfdc46b105217a559fdcefba393678ebba0666c3b2c3</citedby><cites>FETCH-LOGICAL-c275t-caf0a6c606b54b8677cfabfdc46b105217a559fdcefba393678ebba0666c3b2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids></links><search><creatorcontrib>Page, Michael</creatorcontrib><creatorcontrib>Qin, Jiayi</creatorcontrib><creatorcontrib>La Fontaine, James</creatorcontrib><creatorcontrib>Zhao, Chunnong</creatorcontrib><creatorcontrib>Ju, Li</creatorcontrib><creatorcontrib>Blair, David</creatorcontrib><title>Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters</title><title>Physical review. D</title><description>Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot noise at high frequencies. Squeezed vacuum injection has been shown to allow broadband sensitivity improvement, but this technique does not change the slope of the noise at high frequency. It has been shown that white light signal recycling using negative dispersion optomechanical filter cavities with strong optical dilution for thermal noise suppression can in principle allow broadband high frequency sensitivity improvement. Here we present detailed modeling of AlGaAs/GaAs optomechanical filters to identify the available parameter space in which such filters can achieve the low thermal noise required to allow useful sensitivity improvement at high frequency. Material losses, the resolved sideband condition and internal acoustic modes dictate the need for resonators substantially smaller than previously suggested. We identify suitable resonator dimensions and show that a 30  μm scale cat-flap resonator combined with optical squeezing allows 8 fold improvement of strain sensitivity at 2 kHz compared with Advanced LIGO. This corresponds to a detection volume increase of a factor of 500 for sources in this frequency range.</description><subject>Acoustic noise</subject><subject>Astronomy</subject><subject>Black holes</subject><subject>Broadband</subject><subject>Dilution</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>High frequencies</subject><subject>Noise</subject><subject>Parameter identification</subject><subject>Resonators</subject><subject>Sensitivity</subject><subject>Shot noise</subject><subject>Thermal noise</subject><subject>Wave filters</subject><subject>White light</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UN9LwzAYDKLg0P0DPgV87vyStsn6KHP-gIEi-hySNGkzunYm6aT_vRlTn7777o7jOIRuCCwIgfzurZ3Cuzk8LCq-ILQABmdoRgsOGQCtzv8xgUs0D2ELCTKoOCEz1Kz7Vvba1Lg20ejohh4PFreuabH15ms0vZ5w4-XBRXlUZYe_5cEEPAbXN3jYR6dl1024dt0YU05ihp3RKfUoYOu6aHy4RhdWdsHMf-8V-nxcf6yes83r08vqfpNpysuYaWlBMs2AqbJQS8a5tlLZWhdMESgp4bIsq_Qbq2Re5YwvjVISGGM6V1TnV-j2lLv3QyofotgOo0-tg6CEsrLkxRKSi55c2g8heGPF3rud9JMgII6bir9NRcXFadP8B72WbsU</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Page, Michael</creator><creator>Qin, Jiayi</creator><creator>La Fontaine, James</creator><creator>Zhao, Chunnong</creator><creator>Ju, Li</creator><creator>Blair, David</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180615</creationdate><title>Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters</title><author>Page, Michael ; Qin, Jiayi ; La Fontaine, James ; Zhao, Chunnong ; Ju, Li ; Blair, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-caf0a6c606b54b8677cfabfdc46b105217a559fdcefba393678ebba0666c3b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic noise</topic><topic>Astronomy</topic><topic>Black holes</topic><topic>Broadband</topic><topic>Dilution</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>High frequencies</topic><topic>Noise</topic><topic>Parameter identification</topic><topic>Resonators</topic><topic>Sensitivity</topic><topic>Shot noise</topic><topic>Thermal noise</topic><topic>Wave filters</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page, Michael</creatorcontrib><creatorcontrib>Qin, Jiayi</creatorcontrib><creatorcontrib>La Fontaine, James</creatorcontrib><creatorcontrib>Zhao, Chunnong</creatorcontrib><creatorcontrib>Ju, Li</creatorcontrib><creatorcontrib>Blair, David</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page, Michael</au><au>Qin, Jiayi</au><au>La Fontaine, James</au><au>Zhao, Chunnong</au><au>Ju, Li</au><au>Blair, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters</atitle><jtitle>Physical review. D</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>97</volume><issue>12</issue><artnum>124060</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Detections of gravitational waves (GW) in the frequency band 35 to 500 Hz have led to the birth of GW astronomy. Expected signals above 500 Hz, such as the quasinormal modes of lower mass black holes and neutron star merger signatures, are currently not detectable due to increasing quantum shot noise at high frequencies. Squeezed vacuum injection has been shown to allow broadband sensitivity improvement, but this technique does not change the slope of the noise at high frequency. It has been shown that white light signal recycling using negative dispersion optomechanical filter cavities with strong optical dilution for thermal noise suppression can in principle allow broadband high frequency sensitivity improvement. Here we present detailed modeling of AlGaAs/GaAs optomechanical filters to identify the available parameter space in which such filters can achieve the low thermal noise required to allow useful sensitivity improvement at high frequency. Material losses, the resolved sideband condition and internal acoustic modes dictate the need for resonators substantially smaller than previously suggested. We identify suitable resonator dimensions and show that a 30  μm scale cat-flap resonator combined with optical squeezing allows 8 fold improvement of strain sensitivity at 2 kHz compared with Advanced LIGO. This corresponds to a detection volume increase of a factor of 500 for sources in this frequency range.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.97.124060</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2018-06, Vol.97 (12), Article 124060
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2126557480
source American Physical Society Journals
subjects Acoustic noise
Astronomy
Black holes
Broadband
Dilution
Gravitation
Gravitational waves
High frequencies
Noise
Parameter identification
Resonators
Sensitivity
Shot noise
Thermal noise
Wave filters
White light
title Enhanced detection of high frequency gravitational waves using optically diluted optomechanical filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20detection%20of%20high%20frequency%20gravitational%20waves%20using%20optically%20diluted%20optomechanical%20filters&rft.jtitle=Physical%20review.%20D&rft.au=Page,%20Michael&rft.date=2018-06-15&rft.volume=97&rft.issue=12&rft.artnum=124060&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.97.124060&rft_dat=%3Cproquest_cross%3E2126557480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126557480&rft_id=info:pmid/&rfr_iscdi=true