Quantum critical properties of a metallic spin-density-wave transition
We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transiti...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-01, Vol.95 (3), p.035124, Article 035124 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 035124 |
container_title | Physical review. B |
container_volume | 95 |
creator | Gerlach, Max H. Schattner, Yoni Berg, Erez Trebst, Simon |
description | We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z=2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points. |
doi_str_mv | 10.1103/PhysRevB.95.035124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126557290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126557290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-54781f96c89f80c101bfd127d97087456458f876b917bfae101e1d40ecd3f6d23</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gFcBrztP0iZpLnU4Jwz8QK9DmiaY0bU1SSf793ZUvTrnwMN7Xh6ErgksCYH89uXzGN_s4X4p2RJyRmhxhma04DKTksvz_53BJVrEuAMAwkEKkDO0fh10m4Y9NsEnb3SD-9D1NiRvI-4c1nhvk24ab3DsfZvVto0-HbNvfbA4BX26fNdeoQunm2gXv3OOPtYP76tNtn1-fFrdbTNDBUsZK0RJnOSmlK4EQ4BUriZU1GOZUhSMF6x0peCVJKJy2o6AJXUB1tS54zXN5-hmyh1bfg02JrXrhtCOLxUllDMmqISRohNlQhdjsE71we91OCoC6qRM_SlTkqlJWf4DP6tgkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126557290</pqid></control><display><type>article</type><title>Quantum critical properties of a metallic spin-density-wave transition</title><source>American Physical Society Journals</source><creator>Gerlach, Max H. ; Schattner, Yoni ; Berg, Erez ; Trebst, Simon</creator><creatorcontrib>Gerlach, Max H. ; Schattner, Yoni ; Berg, Erez ; Trebst, Simon</creatorcontrib><description>We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z=2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.95.035124</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Computer simulation ; Correlation analysis ; Critical point ; Electron spin ; Fermi liquids ; Fermi surfaces ; Mathematical models ; Order parameters ; Phase transitions ; Spin density waves ; Superconductivity ; Temperature dependence ; Two dimensional models ; Variations ; Weight</subject><ispartof>Physical review. B, 2017-01, Vol.95 (3), p.035124, Article 035124</ispartof><rights>Copyright American Physical Society Jan 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-54781f96c89f80c101bfd127d97087456458f876b917bfae101e1d40ecd3f6d23</citedby><cites>FETCH-LOGICAL-c275t-54781f96c89f80c101bfd127d97087456458f876b917bfae101e1d40ecd3f6d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Gerlach, Max H.</creatorcontrib><creatorcontrib>Schattner, Yoni</creatorcontrib><creatorcontrib>Berg, Erez</creatorcontrib><creatorcontrib>Trebst, Simon</creatorcontrib><title>Quantum critical properties of a metallic spin-density-wave transition</title><title>Physical review. B</title><description>We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z=2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.</description><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Critical point</subject><subject>Electron spin</subject><subject>Fermi liquids</subject><subject>Fermi surfaces</subject><subject>Mathematical models</subject><subject>Order parameters</subject><subject>Phase transitions</subject><subject>Spin density waves</subject><subject>Superconductivity</subject><subject>Temperature dependence</subject><subject>Two dimensional models</subject><subject>Variations</subject><subject>Weight</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOb-gFcBrztP0iZpLnU4Jwz8QK9DmiaY0bU1SSf793ZUvTrnwMN7Xh6ErgksCYH89uXzGN_s4X4p2RJyRmhxhma04DKTksvz_53BJVrEuAMAwkEKkDO0fh10m4Y9NsEnb3SD-9D1NiRvI-4c1nhvk24ab3DsfZvVto0-HbNvfbA4BX26fNdeoQunm2gXv3OOPtYP76tNtn1-fFrdbTNDBUsZK0RJnOSmlK4EQ4BUriZU1GOZUhSMF6x0peCVJKJy2o6AJXUB1tS54zXN5-hmyh1bfg02JrXrhtCOLxUllDMmqISRohNlQhdjsE71we91OCoC6qRM_SlTkqlJWf4DP6tgkA</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Gerlach, Max H.</creator><creator>Schattner, Yoni</creator><creator>Berg, Erez</creator><creator>Trebst, Simon</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170117</creationdate><title>Quantum critical properties of a metallic spin-density-wave transition</title><author>Gerlach, Max H. ; Schattner, Yoni ; Berg, Erez ; Trebst, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-54781f96c89f80c101bfd127d97087456458f876b917bfae101e1d40ecd3f6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Critical point</topic><topic>Electron spin</topic><topic>Fermi liquids</topic><topic>Fermi surfaces</topic><topic>Mathematical models</topic><topic>Order parameters</topic><topic>Phase transitions</topic><topic>Spin density waves</topic><topic>Superconductivity</topic><topic>Temperature dependence</topic><topic>Two dimensional models</topic><topic>Variations</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerlach, Max H.</creatorcontrib><creatorcontrib>Schattner, Yoni</creatorcontrib><creatorcontrib>Berg, Erez</creatorcontrib><creatorcontrib>Trebst, Simon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerlach, Max H.</au><au>Schattner, Yoni</au><au>Berg, Erez</au><au>Trebst, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum critical properties of a metallic spin-density-wave transition</atitle><jtitle>Physical review. B</jtitle><date>2017-01-17</date><risdate>2017</risdate><volume>95</volume><issue>3</issue><spage>035124</spage><pages>035124-</pages><artnum>035124</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z=2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.95.035124</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2017-01, Vol.95 (3), p.035124, Article 035124 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2126557290 |
source | American Physical Society Journals |
subjects | Computer simulation Correlation analysis Critical point Electron spin Fermi liquids Fermi surfaces Mathematical models Order parameters Phase transitions Spin density waves Superconductivity Temperature dependence Two dimensional models Variations Weight |
title | Quantum critical properties of a metallic spin-density-wave transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20critical%20properties%20of%20a%20metallic%20spin-density-wave%20transition&rft.jtitle=Physical%20review.%20B&rft.au=Gerlach,%20Max%20H.&rft.date=2017-01-17&rft.volume=95&rft.issue=3&rft.spage=035124&rft.pages=035124-&rft.artnum=035124&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.95.035124&rft_dat=%3Cproquest_cross%3E2126557290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126557290&rft_id=info:pmid/&rfr_iscdi=true |