Quantum critical properties of a metallic spin-density-wave transition

We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-01, Vol.95 (3), p.035124, Article 035124
Hauptverfasser: Gerlach, Max H., Schattner, Yoni, Berg, Erez, Trebst, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 035124
container_title Physical review. B
container_volume 95
creator Gerlach, Max H.
Schattner, Yoni
Berg, Erez
Trebst, Simon
description We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z=2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.
doi_str_mv 10.1103/PhysRevB.95.035124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126557290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126557290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-54781f96c89f80c101bfd127d97087456458f876b917bfae101e1d40ecd3f6d23</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gFcBrztP0iZpLnU4Jwz8QK9DmiaY0bU1SSf793ZUvTrnwMN7Xh6ErgksCYH89uXzGN_s4X4p2RJyRmhxhma04DKTksvz_53BJVrEuAMAwkEKkDO0fh10m4Y9NsEnb3SD-9D1NiRvI-4c1nhvk24ab3DsfZvVto0-HbNvfbA4BX26fNdeoQunm2gXv3OOPtYP76tNtn1-fFrdbTNDBUsZK0RJnOSmlK4EQ4BUriZU1GOZUhSMF6x0peCVJKJy2o6AJXUB1tS54zXN5-hmyh1bfg02JrXrhtCOLxUllDMmqISRohNlQhdjsE71we91OCoC6qRM_SlTkqlJWf4DP6tgkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126557290</pqid></control><display><type>article</type><title>Quantum critical properties of a metallic spin-density-wave transition</title><source>American Physical Society Journals</source><creator>Gerlach, Max H. ; Schattner, Yoni ; Berg, Erez ; Trebst, Simon</creator><creatorcontrib>Gerlach, Max H. ; Schattner, Yoni ; Berg, Erez ; Trebst, Simon</creatorcontrib><description>We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z=2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.95.035124</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Computer simulation ; Correlation analysis ; Critical point ; Electron spin ; Fermi liquids ; Fermi surfaces ; Mathematical models ; Order parameters ; Phase transitions ; Spin density waves ; Superconductivity ; Temperature dependence ; Two dimensional models ; Variations ; Weight</subject><ispartof>Physical review. B, 2017-01, Vol.95 (3), p.035124, Article 035124</ispartof><rights>Copyright American Physical Society Jan 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-54781f96c89f80c101bfd127d97087456458f876b917bfae101e1d40ecd3f6d23</citedby><cites>FETCH-LOGICAL-c275t-54781f96c89f80c101bfd127d97087456458f876b917bfae101e1d40ecd3f6d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Gerlach, Max H.</creatorcontrib><creatorcontrib>Schattner, Yoni</creatorcontrib><creatorcontrib>Berg, Erez</creatorcontrib><creatorcontrib>Trebst, Simon</creatorcontrib><title>Quantum critical properties of a metallic spin-density-wave transition</title><title>Physical review. B</title><description>We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z=2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.</description><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Critical point</subject><subject>Electron spin</subject><subject>Fermi liquids</subject><subject>Fermi surfaces</subject><subject>Mathematical models</subject><subject>Order parameters</subject><subject>Phase transitions</subject><subject>Spin density waves</subject><subject>Superconductivity</subject><subject>Temperature dependence</subject><subject>Two dimensional models</subject><subject>Variations</subject><subject>Weight</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOb-gFcBrztP0iZpLnU4Jwz8QK9DmiaY0bU1SSf793ZUvTrnwMN7Xh6ErgksCYH89uXzGN_s4X4p2RJyRmhxhma04DKTksvz_53BJVrEuAMAwkEKkDO0fh10m4Y9NsEnb3SD-9D1NiRvI-4c1nhvk24ab3DsfZvVto0-HbNvfbA4BX26fNdeoQunm2gXv3OOPtYP76tNtn1-fFrdbTNDBUsZK0RJnOSmlK4EQ4BUriZU1GOZUhSMF6x0peCVJKJy2o6AJXUB1tS54zXN5-hmyh1bfg02JrXrhtCOLxUllDMmqISRohNlQhdjsE71we91OCoC6qRM_SlTkqlJWf4DP6tgkA</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Gerlach, Max H.</creator><creator>Schattner, Yoni</creator><creator>Berg, Erez</creator><creator>Trebst, Simon</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170117</creationdate><title>Quantum critical properties of a metallic spin-density-wave transition</title><author>Gerlach, Max H. ; Schattner, Yoni ; Berg, Erez ; Trebst, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-54781f96c89f80c101bfd127d97087456458f876b917bfae101e1d40ecd3f6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Critical point</topic><topic>Electron spin</topic><topic>Fermi liquids</topic><topic>Fermi surfaces</topic><topic>Mathematical models</topic><topic>Order parameters</topic><topic>Phase transitions</topic><topic>Spin density waves</topic><topic>Superconductivity</topic><topic>Temperature dependence</topic><topic>Two dimensional models</topic><topic>Variations</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerlach, Max H.</creatorcontrib><creatorcontrib>Schattner, Yoni</creatorcontrib><creatorcontrib>Berg, Erez</creatorcontrib><creatorcontrib>Trebst, Simon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerlach, Max H.</au><au>Schattner, Yoni</au><au>Berg, Erez</au><au>Trebst, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum critical properties of a metallic spin-density-wave transition</atitle><jtitle>Physical review. B</jtitle><date>2017-01-17</date><risdate>2017</risdate><volume>95</volume><issue>3</issue><spage>035124</spage><pages>035124-</pages><artnum>035124</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z=2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.95.035124</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2017-01, Vol.95 (3), p.035124, Article 035124
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2126557290
source American Physical Society Journals
subjects Computer simulation
Correlation analysis
Critical point
Electron spin
Fermi liquids
Fermi surfaces
Mathematical models
Order parameters
Phase transitions
Spin density waves
Superconductivity
Temperature dependence
Two dimensional models
Variations
Weight
title Quantum critical properties of a metallic spin-density-wave transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20critical%20properties%20of%20a%20metallic%20spin-density-wave%20transition&rft.jtitle=Physical%20review.%20B&rft.au=Gerlach,%20Max%20H.&rft.date=2017-01-17&rft.volume=95&rft.issue=3&rft.spage=035124&rft.pages=035124-&rft.artnum=035124&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.95.035124&rft_dat=%3Cproquest_cross%3E2126557290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126557290&rft_id=info:pmid/&rfr_iscdi=true