Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections
We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-10, Vol.116 (13) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 116 |
creator | Koon, Daniel W. Wang, Fei Petersen, Dirch Hjorth Hansen, Ole |
description | We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc. |
doi_str_mv | 10.1063/1.4896947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126534209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126534209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-cedeb4cf61c92b2c33adfe678d7a7119d12de6f1afe9d97125650452a12a78743</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKsHv0HAk9Ctedk_2XgTsVYoeFDPS5q8aMo2qUla6Ld3bXt6DG_mNzCE3AKbAmvKB5hWrWxkJc7ICFgrC1HX7JyMGONQtFLIS3KV0ooxgLaUI7L7QJ9cdjuX9zRYGjG5NEikyhs6V31P16jSNuIafU40B9oHrXrq_E9Yh2_0OKQxPdKZ8y5jYR32ZjK88wG8nxxAKqKiOsSIOrvg0zW5sKpPeHO6Y_I1e_l8nheL99e356dFobnkudBocFlp24CWfMl1WSpjsRGtEUoASAPcYGNBWZRGCuB1U7Oq5gq4Eq2oyjG5O3I3MfxuMeVuFbbRD5UdB97UZcWZHFz3R5eOIaWItttEt1Zx3wHr_mftoDvNWv4BMtJr1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126534209</pqid></control><display><type>article</type><title>Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Koon, Daniel W. ; Wang, Fei ; Petersen, Dirch Hjorth ; Hansen, Ole</creator><creatorcontrib>Koon, Daniel W. ; Wang, Fei ; Petersen, Dirch Hjorth ; Hansen, Ole</creatorcontrib><description>We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4896947</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Charge transport ; Circularity ; Computer simulation ; Electrical resistivity ; Foils ; Inhomogeneity ; Magnetic fields ; Mirrors ; Resistance ; Sensitivity analysis ; Superposition (mathematics) ; Tensors</subject><ispartof>Journal of applied physics, 2014-10, Vol.116 (13)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-cedeb4cf61c92b2c33adfe678d7a7119d12de6f1afe9d97125650452a12a78743</citedby><cites>FETCH-LOGICAL-c292t-cedeb4cf61c92b2c33adfe678d7a7119d12de6f1afe9d97125650452a12a78743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Koon, Daniel W.</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Petersen, Dirch Hjorth</creatorcontrib><creatorcontrib>Hansen, Ole</creatorcontrib><title>Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections</title><title>Journal of applied physics</title><description>We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.</description><subject>Applied physics</subject><subject>Charge transport</subject><subject>Circularity</subject><subject>Computer simulation</subject><subject>Electrical resistivity</subject><subject>Foils</subject><subject>Inhomogeneity</subject><subject>Magnetic fields</subject><subject>Mirrors</subject><subject>Resistance</subject><subject>Sensitivity analysis</subject><subject>Superposition (mathematics)</subject><subject>Tensors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEUxIMoWKsHv0HAk9Ctedk_2XgTsVYoeFDPS5q8aMo2qUla6Ld3bXt6DG_mNzCE3AKbAmvKB5hWrWxkJc7ICFgrC1HX7JyMGONQtFLIS3KV0ooxgLaUI7L7QJ9cdjuX9zRYGjG5NEikyhs6V31P16jSNuIafU40B9oHrXrq_E9Yh2_0OKQxPdKZ8y5jYR32ZjK88wG8nxxAKqKiOsSIOrvg0zW5sKpPeHO6Y_I1e_l8nheL99e356dFobnkudBocFlp24CWfMl1WSpjsRGtEUoASAPcYGNBWZRGCuB1U7Oq5gq4Eq2oyjG5O3I3MfxuMeVuFbbRD5UdB97UZcWZHFz3R5eOIaWItttEt1Zx3wHr_mftoDvNWv4BMtJr1A</recordid><startdate>20141007</startdate><enddate>20141007</enddate><creator>Koon, Daniel W.</creator><creator>Wang, Fei</creator><creator>Petersen, Dirch Hjorth</creator><creator>Hansen, Ole</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141007</creationdate><title>Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections</title><author>Koon, Daniel W. ; Wang, Fei ; Petersen, Dirch Hjorth ; Hansen, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-cedeb4cf61c92b2c33adfe678d7a7119d12de6f1afe9d97125650452a12a78743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Charge transport</topic><topic>Circularity</topic><topic>Computer simulation</topic><topic>Electrical resistivity</topic><topic>Foils</topic><topic>Inhomogeneity</topic><topic>Magnetic fields</topic><topic>Mirrors</topic><topic>Resistance</topic><topic>Sensitivity analysis</topic><topic>Superposition (mathematics)</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koon, Daniel W.</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Petersen, Dirch Hjorth</creatorcontrib><creatorcontrib>Hansen, Ole</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koon, Daniel W.</au><au>Wang, Fei</au><au>Petersen, Dirch Hjorth</au><au>Hansen, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections</atitle><jtitle>Journal of applied physics</jtitle><date>2014-10-07</date><risdate>2014</risdate><volume>116</volume><issue>13</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4896947</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2014-10, Vol.116 (13) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2126534209 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Charge transport Circularity Computer simulation Electrical resistivity Foils Inhomogeneity Magnetic fields Mirrors Resistance Sensitivity analysis Superposition (mathematics) Tensors |
title | Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20resistive%20and%20Hall%20measurements%20to%20local%20inhomogeneities:%20Finite-field,%20intensity,%20and%20area%20corrections&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Koon,%20Daniel%20W.&rft.date=2014-10-07&rft.volume=116&rft.issue=13&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4896947&rft_dat=%3Cproquest_cross%3E2126534209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126534209&rft_id=info:pmid/&rfr_iscdi=true |