Relativistic Bessel cylinders
A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a me...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2014-10, Vol.55 (10), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 55 |
creator | Krisch, J P Glass, E N |
description | A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given. |
doi_str_mv | 10.1063/1.4898770 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126526016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3507929441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4ef67cff80ddb5333bec98bfa45d9da8815aa2bcfacd140b691403b64acf3ea33</originalsourceid><addsrcrecordid>eNp9kMtKA0EURBtRcIwu_AAh4MrFxHv7NXeWGuIDAoLouuknTBiT2D0R8veOJGs3VZtDFRzGrhFmCFrc40xSS00DJ6xCoLZutKJTVgFwXnNJdM4uSlkBIJKUFbt5j70dup-uDJ2fPsZSYj_1-75bh5jLJTtLti_x6tgT9vm0-Ji_1Mu359f5w7L2XKqhljHpxqdEEIJTQggXfUsuWalCGywRKmu588n6gBKcbscUTkvrk4hWiAm7Pexu8-Z7F8tgVptdXo-XhiPXimtA_R-FmhMgKQ0jdXegfN6UkmMy29x92bw3CObPkUFzdCR-AeuwVwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1628018560</pqid></control><display><type>article</type><title>Relativistic Bessel cylinders</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Krisch, J P ; Glass, E N</creator><creatorcontrib>Krisch, J P ; Glass, E N</creatorcontrib><description>A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4898770</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Airy function ; Bessel functions ; Cylinders ; Density ; Geometry ; Gravity ; Mathematical functions ; Mathematical problems ; Physics</subject><ispartof>Journal of mathematical physics, 2014-10, Vol.55 (10), p.1</ispartof><rights>Copyright American Institute of Physics Oct 2014</rights><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4ef67cff80ddb5333bec98bfa45d9da8815aa2bcfacd140b691403b64acf3ea33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Krisch, J P</creatorcontrib><creatorcontrib>Glass, E N</creatorcontrib><title>Relativistic Bessel cylinders</title><title>Journal of mathematical physics</title><description>A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.</description><subject>Airy function</subject><subject>Bessel functions</subject><subject>Cylinders</subject><subject>Density</subject><subject>Geometry</subject><subject>Gravity</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKA0EURBtRcIwu_AAh4MrFxHv7NXeWGuIDAoLouuknTBiT2D0R8veOJGs3VZtDFRzGrhFmCFrc40xSS00DJ6xCoLZutKJTVgFwXnNJdM4uSlkBIJKUFbt5j70dup-uDJ2fPsZSYj_1-75bh5jLJTtLti_x6tgT9vm0-Ji_1Mu359f5w7L2XKqhljHpxqdEEIJTQggXfUsuWalCGywRKmu588n6gBKcbscUTkvrk4hWiAm7Pexu8-Z7F8tgVptdXo-XhiPXimtA_R-FmhMgKQ0jdXegfN6UkmMy29x92bw3CObPkUFzdCR-AeuwVwI</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Krisch, J P</creator><creator>Glass, E N</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20141001</creationdate><title>Relativistic Bessel cylinders</title><author>Krisch, J P ; Glass, E N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4ef67cff80ddb5333bec98bfa45d9da8815aa2bcfacd140b691403b64acf3ea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Airy function</topic><topic>Bessel functions</topic><topic>Cylinders</topic><topic>Density</topic><topic>Geometry</topic><topic>Gravity</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krisch, J P</creatorcontrib><creatorcontrib>Glass, E N</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krisch, J P</au><au>Glass, E N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic Bessel cylinders</atitle><jtitle>Journal of mathematical physics</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>55</volume><issue>10</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4898770</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2014-10, Vol.55 (10), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2126526016 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Airy function Bessel functions Cylinders Density Geometry Gravity Mathematical functions Mathematical problems Physics |
title | Relativistic Bessel cylinders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic%20Bessel%20cylinders&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Krisch,%20J%20P&rft.date=2014-10-01&rft.volume=55&rft.issue=10&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4898770&rft_dat=%3Cproquest_cross%3E3507929441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1628018560&rft_id=info:pmid/&rfr_iscdi=true |