Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement
Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag redu...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-11, Vol.105 (19) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 105 |
creator | Dai, Xianming Yang, Fanghao Yang, Ronggui Huang, Xinyu Rigdon, William A. Li, Xiaodong Li, Chen |
description | Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement of capillary evaporation heat transfer coefficient. A peak evaporation heat transfer coefficient of 21.2 W/(cm2·K) is achieved on the biphilic surfaces in a vertical direction. |
doi_str_mv | 10.1063/1.4901962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126513743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126513743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-62e964b5684b5b2fc0e95104552b67735eef95455ebe18b2d312c8786c5504e43</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqFw4A0sceKQ4rVjJzlCxZ9UiQucLcfZ0FSpHewEwdvj0l52Nbuj0ach5BrYEpgSd7Asaga14ickA1aWuQCoTknGGBO5qiWck4sYt0lKLkRG8KEfN_3QW-qM86MPfo40zqEzFiNFZ5oBW4o_Fsep984MtA3mkwZsZ7s_UONaas3YD4MJvxS_Tcow_x90G-Ms7tBNl-SsM0PEq-NekI-nx_fVS75-e35d3a9zy2s-5YpjrYpGqiqNhneWYSJmhZS8UWUpJGJXyySxQaga3grgtiorZaVkBRZiQW4OuWPwXzPGSW_9HBJ11By4kiDKQiTX7cFlg48xYKfH0O8Svgam9y1q0McWxR_fi2TP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126513743</pqid></control><display><type>article</type><title>Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dai, Xianming ; Yang, Fanghao ; Yang, Ronggui ; Huang, Xinyu ; Rigdon, William A. ; Li, Xiaodong ; Li, Chen</creator><creatorcontrib>Dai, Xianming ; Yang, Fanghao ; Yang, Ronggui ; Huang, Xinyu ; Rigdon, William A. ; Li, Xiaodong ; Li, Chen</creatorcontrib><description>Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement of capillary evaporation heat transfer coefficient. A peak evaporation heat transfer coefficient of 21.2 W/(cm2·K) is achieved on the biphilic surfaces in a vertical direction.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4901962</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boundary conditions ; Coefficient of friction ; Drag reduction ; Evaporation ; Friction reduction ; Functional groups ; Heat transfer coefficients ; Multi wall carbon nanotubes ; Synthesis ; Wetting</subject><ispartof>Applied physics letters, 2014-11, Vol.105 (19)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-62e964b5684b5b2fc0e95104552b67735eef95455ebe18b2d312c8786c5504e43</citedby><cites>FETCH-LOGICAL-c292t-62e964b5684b5b2fc0e95104552b67735eef95455ebe18b2d312c8786c5504e43</cites><orcidid>0000-0003-2530-7810 ; 0000-0003-2810-8614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dai, Xianming</creatorcontrib><creatorcontrib>Yang, Fanghao</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Huang, Xinyu</creatorcontrib><creatorcontrib>Rigdon, William A.</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><title>Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement</title><title>Applied physics letters</title><description>Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement of capillary evaporation heat transfer coefficient. A peak evaporation heat transfer coefficient of 21.2 W/(cm2·K) is achieved on the biphilic surfaces in a vertical direction.</description><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Coefficient of friction</subject><subject>Drag reduction</subject><subject>Evaporation</subject><subject>Friction reduction</subject><subject>Functional groups</subject><subject>Heat transfer coefficients</subject><subject>Multi wall carbon nanotubes</subject><subject>Synthesis</subject><subject>Wetting</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqFw4A0sceKQ4rVjJzlCxZ9UiQucLcfZ0FSpHewEwdvj0l52Nbuj0ach5BrYEpgSd7Asaga14ickA1aWuQCoTknGGBO5qiWck4sYt0lKLkRG8KEfN_3QW-qM86MPfo40zqEzFiNFZ5oBW4o_Fsep984MtA3mkwZsZ7s_UONaas3YD4MJvxS_Tcow_x90G-Ms7tBNl-SsM0PEq-NekI-nx_fVS75-e35d3a9zy2s-5YpjrYpGqiqNhneWYSJmhZS8UWUpJGJXyySxQaga3grgtiorZaVkBRZiQW4OuWPwXzPGSW_9HBJ11By4kiDKQiTX7cFlg48xYKfH0O8Svgam9y1q0McWxR_fi2TP</recordid><startdate>20141110</startdate><enddate>20141110</enddate><creator>Dai, Xianming</creator><creator>Yang, Fanghao</creator><creator>Yang, Ronggui</creator><creator>Huang, Xinyu</creator><creator>Rigdon, William A.</creator><creator>Li, Xiaodong</creator><creator>Li, Chen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2530-7810</orcidid><orcidid>https://orcid.org/0000-0003-2810-8614</orcidid></search><sort><creationdate>20141110</creationdate><title>Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement</title><author>Dai, Xianming ; Yang, Fanghao ; Yang, Ronggui ; Huang, Xinyu ; Rigdon, William A. ; Li, Xiaodong ; Li, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-62e964b5684b5b2fc0e95104552b67735eef95455ebe18b2d312c8786c5504e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Coefficient of friction</topic><topic>Drag reduction</topic><topic>Evaporation</topic><topic>Friction reduction</topic><topic>Functional groups</topic><topic>Heat transfer coefficients</topic><topic>Multi wall carbon nanotubes</topic><topic>Synthesis</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Xianming</creatorcontrib><creatorcontrib>Yang, Fanghao</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Huang, Xinyu</creatorcontrib><creatorcontrib>Rigdon, William A.</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Xianming</au><au>Yang, Fanghao</au><au>Yang, Ronggui</au><au>Huang, Xinyu</au><au>Rigdon, William A.</au><au>Li, Xiaodong</au><au>Li, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement</atitle><jtitle>Applied physics letters</jtitle><date>2014-11-10</date><risdate>2014</risdate><volume>105</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement of capillary evaporation heat transfer coefficient. A peak evaporation heat transfer coefficient of 21.2 W/(cm2·K) is achieved on the biphilic surfaces in a vertical direction.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4901962</doi><orcidid>https://orcid.org/0000-0003-2530-7810</orcidid><orcidid>https://orcid.org/0000-0003-2810-8614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-11, Vol.105 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2126513743 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Boundary conditions Coefficient of friction Drag reduction Evaporation Friction reduction Functional groups Heat transfer coefficients Multi wall carbon nanotubes Synthesis Wetting |
title | Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biphilic%20nanoporous%20surfaces%20enabled%20exceptional%20drag%20reduction%20and%20capillary%20evaporation%20enhancement&rft.jtitle=Applied%20physics%20letters&rft.au=Dai,%20Xianming&rft.date=2014-11-10&rft.volume=105&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4901962&rft_dat=%3Cproquest_cross%3E2126513743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126513743&rft_id=info:pmid/&rfr_iscdi=true |