Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement

Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-11, Vol.105 (19)
Hauptverfasser: Dai, Xianming, Yang, Fanghao, Yang, Ronggui, Huang, Xinyu, Rigdon, William A., Li, Xiaodong, Li, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Applied physics letters
container_volume 105
creator Dai, Xianming
Yang, Fanghao
Yang, Ronggui
Huang, Xinyu
Rigdon, William A.
Li, Xiaodong
Li, Chen
description Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement of capillary evaporation heat transfer coefficient. A peak evaporation heat transfer coefficient of 21.2 W/(cm2·K) is achieved on the biphilic surfaces in a vertical direction.
doi_str_mv 10.1063/1.4901962
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126513743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126513743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-62e964b5684b5b2fc0e95104552b67735eef95455ebe18b2d312c8786c5504e43</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqFw4A0sceKQ4rVjJzlCxZ9UiQucLcfZ0FSpHewEwdvj0l52Nbuj0ach5BrYEpgSd7Asaga14ickA1aWuQCoTknGGBO5qiWck4sYt0lKLkRG8KEfN_3QW-qM86MPfo40zqEzFiNFZ5oBW4o_Fsep984MtA3mkwZsZ7s_UONaas3YD4MJvxS_Tcow_x90G-Ms7tBNl-SsM0PEq-NekI-nx_fVS75-e35d3a9zy2s-5YpjrYpGqiqNhneWYSJmhZS8UWUpJGJXyySxQaga3grgtiorZaVkBRZiQW4OuWPwXzPGSW_9HBJ11By4kiDKQiTX7cFlg48xYKfH0O8Svgam9y1q0McWxR_fi2TP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126513743</pqid></control><display><type>article</type><title>Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dai, Xianming ; Yang, Fanghao ; Yang, Ronggui ; Huang, Xinyu ; Rigdon, William A. ; Li, Xiaodong ; Li, Chen</creator><creatorcontrib>Dai, Xianming ; Yang, Fanghao ; Yang, Ronggui ; Huang, Xinyu ; Rigdon, William A. ; Li, Xiaodong ; Li, Chen</creatorcontrib><description>Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement of capillary evaporation heat transfer coefficient. A peak evaporation heat transfer coefficient of 21.2 W/(cm2·K) is achieved on the biphilic surfaces in a vertical direction.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4901962</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boundary conditions ; Coefficient of friction ; Drag reduction ; Evaporation ; Friction reduction ; Functional groups ; Heat transfer coefficients ; Multi wall carbon nanotubes ; Synthesis ; Wetting</subject><ispartof>Applied physics letters, 2014-11, Vol.105 (19)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-62e964b5684b5b2fc0e95104552b67735eef95455ebe18b2d312c8786c5504e43</citedby><cites>FETCH-LOGICAL-c292t-62e964b5684b5b2fc0e95104552b67735eef95455ebe18b2d312c8786c5504e43</cites><orcidid>0000-0003-2530-7810 ; 0000-0003-2810-8614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dai, Xianming</creatorcontrib><creatorcontrib>Yang, Fanghao</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Huang, Xinyu</creatorcontrib><creatorcontrib>Rigdon, William A.</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><title>Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement</title><title>Applied physics letters</title><description>Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement of capillary evaporation heat transfer coefficient. A peak evaporation heat transfer coefficient of 21.2 W/(cm2·K) is achieved on the biphilic surfaces in a vertical direction.</description><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Coefficient of friction</subject><subject>Drag reduction</subject><subject>Evaporation</subject><subject>Friction reduction</subject><subject>Functional groups</subject><subject>Heat transfer coefficients</subject><subject>Multi wall carbon nanotubes</subject><subject>Synthesis</subject><subject>Wetting</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqFw4A0sceKQ4rVjJzlCxZ9UiQucLcfZ0FSpHewEwdvj0l52Nbuj0ach5BrYEpgSd7Asaga14ickA1aWuQCoTknGGBO5qiWck4sYt0lKLkRG8KEfN_3QW-qM86MPfo40zqEzFiNFZ5oBW4o_Fsep984MtA3mkwZsZ7s_UONaas3YD4MJvxS_Tcow_x90G-Ms7tBNl-SsM0PEq-NekI-nx_fVS75-e35d3a9zy2s-5YpjrYpGqiqNhneWYSJmhZS8UWUpJGJXyySxQaga3grgtiorZaVkBRZiQW4OuWPwXzPGSW_9HBJ11By4kiDKQiTX7cFlg48xYKfH0O8Svgam9y1q0McWxR_fi2TP</recordid><startdate>20141110</startdate><enddate>20141110</enddate><creator>Dai, Xianming</creator><creator>Yang, Fanghao</creator><creator>Yang, Ronggui</creator><creator>Huang, Xinyu</creator><creator>Rigdon, William A.</creator><creator>Li, Xiaodong</creator><creator>Li, Chen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2530-7810</orcidid><orcidid>https://orcid.org/0000-0003-2810-8614</orcidid></search><sort><creationdate>20141110</creationdate><title>Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement</title><author>Dai, Xianming ; Yang, Fanghao ; Yang, Ronggui ; Huang, Xinyu ; Rigdon, William A. ; Li, Xiaodong ; Li, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-62e964b5684b5b2fc0e95104552b67735eef95455ebe18b2d312c8786c5504e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Coefficient of friction</topic><topic>Drag reduction</topic><topic>Evaporation</topic><topic>Friction reduction</topic><topic>Functional groups</topic><topic>Heat transfer coefficients</topic><topic>Multi wall carbon nanotubes</topic><topic>Synthesis</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Xianming</creatorcontrib><creatorcontrib>Yang, Fanghao</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Huang, Xinyu</creatorcontrib><creatorcontrib>Rigdon, William A.</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Xianming</au><au>Yang, Fanghao</au><au>Yang, Ronggui</au><au>Huang, Xinyu</au><au>Rigdon, William A.</au><au>Li, Xiaodong</au><au>Li, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement</atitle><jtitle>Applied physics letters</jtitle><date>2014-11-10</date><risdate>2014</risdate><volume>105</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement of capillary evaporation heat transfer coefficient. A peak evaporation heat transfer coefficient of 21.2 W/(cm2·K) is achieved on the biphilic surfaces in a vertical direction.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4901962</doi><orcidid>https://orcid.org/0000-0003-2530-7810</orcidid><orcidid>https://orcid.org/0000-0003-2810-8614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2014-11, Vol.105 (19)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2126513743
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Boundary conditions
Coefficient of friction
Drag reduction
Evaporation
Friction reduction
Functional groups
Heat transfer coefficients
Multi wall carbon nanotubes
Synthesis
Wetting
title Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biphilic%20nanoporous%20surfaces%20enabled%20exceptional%20drag%20reduction%20and%20capillary%20evaporation%20enhancement&rft.jtitle=Applied%20physics%20letters&rft.au=Dai,%20Xianming&rft.date=2014-11-10&rft.volume=105&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4901962&rft_dat=%3Cproquest_cross%3E2126513743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126513743&rft_id=info:pmid/&rfr_iscdi=true