Dynamic mode decomposition for large and streaming datasets
We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equiv...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2014-11, Vol.26 (11) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 26 |
creator | Hemati, Maziar S. Williams, Matthew O. Rowley, Clarence W. |
description | We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments. |
doi_str_mv | 10.1063/1.4901016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126504006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126504006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-2f1a6631158ce298059a97dcbc9d4535bc86bb13802b507f0944e9ea276bea273</originalsourceid><addsrcrecordid>eNotUL1OwzAYtBBIlMDAG1hiYkj5Pjt2bDGh8itVYoHZsh2nStXEwU6Hvj2N2uXuhtOd7gi5R1giSP6Ey0oDAsoLskBQuqyllJezrqGUkuM1ucl5CwBcM7kgz6-Hwfadp31sAm2Cj_0Yczd1caBtTHRn0yZQOzQ0TykcncOGNnayOUz5lly1dpfD3ZkL8vv-9rP6LNffH1-rl3XpuVBTyVq0czMK5QPTCoS2um6887qpBBfOK-kccgXMCahb0FUVdLCslm5GXpCHU-6Y4t8-5Mls4z4Nx0rDkEkBFRynF-Tx5PIp5pxCa8bU9TYdDIKZvzFozt_wfxXNVIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126504006</pqid></control><display><type>article</type><title>Dynamic mode decomposition for large and streaming datasets</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hemati, Maziar S. ; Williams, Matthew O. ; Rowley, Clarence W.</creator><creatorcontrib>Hemati, Maziar S. ; Williams, Matthew O. ; Rowley, Clarence W.</creatorcontrib><description>We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4901016</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Computer simulation ; Computing time ; Cylinders ; Datasets ; Decomposition ; Fluid dynamics ; Particle image velocimetry ; Physics ; Velocity measurement</subject><ispartof>Physics of fluids (1994), 2014-11, Vol.26 (11)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-2f1a6631158ce298059a97dcbc9d4535bc86bb13802b507f0944e9ea276bea273</citedby><cites>FETCH-LOGICAL-c358t-2f1a6631158ce298059a97dcbc9d4535bc86bb13802b507f0944e9ea276bea273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Hemati, Maziar S.</creatorcontrib><creatorcontrib>Williams, Matthew O.</creatorcontrib><creatorcontrib>Rowley, Clarence W.</creatorcontrib><title>Dynamic mode decomposition for large and streaming datasets</title><title>Physics of fluids (1994)</title><description>We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Cylinders</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Fluid dynamics</subject><subject>Particle image velocimetry</subject><subject>Physics</subject><subject>Velocity measurement</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotUL1OwzAYtBBIlMDAG1hiYkj5Pjt2bDGh8itVYoHZsh2nStXEwU6Hvj2N2uXuhtOd7gi5R1giSP6Ey0oDAsoLskBQuqyllJezrqGUkuM1ucl5CwBcM7kgz6-Hwfadp31sAm2Cj_0Yczd1caBtTHRn0yZQOzQ0TykcncOGNnayOUz5lly1dpfD3ZkL8vv-9rP6LNffH1-rl3XpuVBTyVq0czMK5QPTCoS2um6887qpBBfOK-kccgXMCahb0FUVdLCslm5GXpCHU-6Y4t8-5Mls4z4Nx0rDkEkBFRynF-Tx5PIp5pxCa8bU9TYdDIKZvzFozt_wfxXNVIs</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Hemati, Maziar S.</creator><creator>Williams, Matthew O.</creator><creator>Rowley, Clarence W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Dynamic mode decomposition for large and streaming datasets</title><author>Hemati, Maziar S. ; Williams, Matthew O. ; Rowley, Clarence W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-2f1a6631158ce298059a97dcbc9d4535bc86bb13802b507f0944e9ea276bea273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Cylinders</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Fluid dynamics</topic><topic>Particle image velocimetry</topic><topic>Physics</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemati, Maziar S.</creatorcontrib><creatorcontrib>Williams, Matthew O.</creatorcontrib><creatorcontrib>Rowley, Clarence W.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemati, Maziar S.</au><au>Williams, Matthew O.</au><au>Rowley, Clarence W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic mode decomposition for large and streaming datasets</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>26</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><abstract>We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4901016</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2014-11, Vol.26 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2126504006 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Computer simulation Computing time Cylinders Datasets Decomposition Fluid dynamics Particle image velocimetry Physics Velocity measurement |
title | Dynamic mode decomposition for large and streaming datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20mode%20decomposition%20for%20large%20and%20streaming%20datasets&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Hemati,%20Maziar%20S.&rft.date=2014-11-01&rft.volume=26&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4901016&rft_dat=%3Cproquest_cross%3E2126504006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126504006&rft_id=info:pmid/&rfr_iscdi=true |