Dynamic mode decomposition for large and streaming datasets

We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2014-11, Vol.26 (11)
Hauptverfasser: Hemati, Maziar S., Williams, Matthew O., Rowley, Clarence W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 26
creator Hemati, Maziar S.
Williams, Matthew O.
Rowley, Clarence W.
description We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments.
doi_str_mv 10.1063/1.4901016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126504006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126504006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-2f1a6631158ce298059a97dcbc9d4535bc86bb13802b507f0944e9ea276bea273</originalsourceid><addsrcrecordid>eNotUL1OwzAYtBBIlMDAG1hiYkj5Pjt2bDGh8itVYoHZsh2nStXEwU6Hvj2N2uXuhtOd7gi5R1giSP6Ey0oDAsoLskBQuqyllJezrqGUkuM1ucl5CwBcM7kgz6-Hwfadp31sAm2Cj_0Yczd1caBtTHRn0yZQOzQ0TykcncOGNnayOUz5lly1dpfD3ZkL8vv-9rP6LNffH1-rl3XpuVBTyVq0czMK5QPTCoS2um6887qpBBfOK-kccgXMCahb0FUVdLCslm5GXpCHU-6Y4t8-5Mls4z4Nx0rDkEkBFRynF-Tx5PIp5pxCa8bU9TYdDIKZvzFozt_wfxXNVIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126504006</pqid></control><display><type>article</type><title>Dynamic mode decomposition for large and streaming datasets</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hemati, Maziar S. ; Williams, Matthew O. ; Rowley, Clarence W.</creator><creatorcontrib>Hemati, Maziar S. ; Williams, Matthew O. ; Rowley, Clarence W.</creatorcontrib><description>We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4901016</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Computer simulation ; Computing time ; Cylinders ; Datasets ; Decomposition ; Fluid dynamics ; Particle image velocimetry ; Physics ; Velocity measurement</subject><ispartof>Physics of fluids (1994), 2014-11, Vol.26 (11)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-2f1a6631158ce298059a97dcbc9d4535bc86bb13802b507f0944e9ea276bea273</citedby><cites>FETCH-LOGICAL-c358t-2f1a6631158ce298059a97dcbc9d4535bc86bb13802b507f0944e9ea276bea273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Hemati, Maziar S.</creatorcontrib><creatorcontrib>Williams, Matthew O.</creatorcontrib><creatorcontrib>Rowley, Clarence W.</creatorcontrib><title>Dynamic mode decomposition for large and streaming datasets</title><title>Physics of fluids (1994)</title><description>We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Cylinders</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Fluid dynamics</subject><subject>Particle image velocimetry</subject><subject>Physics</subject><subject>Velocity measurement</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotUL1OwzAYtBBIlMDAG1hiYkj5Pjt2bDGh8itVYoHZsh2nStXEwU6Hvj2N2uXuhtOd7gi5R1giSP6Ey0oDAsoLskBQuqyllJezrqGUkuM1ucl5CwBcM7kgz6-Hwfadp31sAm2Cj_0Yczd1caBtTHRn0yZQOzQ0TykcncOGNnayOUz5lly1dpfD3ZkL8vv-9rP6LNffH1-rl3XpuVBTyVq0czMK5QPTCoS2um6887qpBBfOK-kccgXMCahb0FUVdLCslm5GXpCHU-6Y4t8-5Mls4z4Nx0rDkEkBFRynF-Tx5PIp5pxCa8bU9TYdDIKZvzFozt_wfxXNVIs</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Hemati, Maziar S.</creator><creator>Williams, Matthew O.</creator><creator>Rowley, Clarence W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Dynamic mode decomposition for large and streaming datasets</title><author>Hemati, Maziar S. ; Williams, Matthew O. ; Rowley, Clarence W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-2f1a6631158ce298059a97dcbc9d4535bc86bb13802b507f0944e9ea276bea273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Cylinders</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Fluid dynamics</topic><topic>Particle image velocimetry</topic><topic>Physics</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemati, Maziar S.</creatorcontrib><creatorcontrib>Williams, Matthew O.</creatorcontrib><creatorcontrib>Rowley, Clarence W.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemati, Maziar S.</au><au>Williams, Matthew O.</au><au>Rowley, Clarence W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic mode decomposition for large and streaming datasets</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>26</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><abstract>We formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4901016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2014-11, Vol.26 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2126504006
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Computer simulation
Computing time
Cylinders
Datasets
Decomposition
Fluid dynamics
Particle image velocimetry
Physics
Velocity measurement
title Dynamic mode decomposition for large and streaming datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20mode%20decomposition%20for%20large%20and%20streaming%20datasets&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Hemati,%20Maziar%20S.&rft.date=2014-11-01&rft.volume=26&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4901016&rft_dat=%3Cproquest_cross%3E2126504006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126504006&rft_id=info:pmid/&rfr_iscdi=true