Molecular simulation of 3D turbulent channel flow
The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbul...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1355 |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1628 |
creator | Zeng Dandan Zhong Fengquan Fan, Jing |
description | The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and Boussinesq eddy viscosity. |
doi_str_mv | 10.1063/1.4902748 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126499394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126499394</sourcerecordid><originalsourceid>FETCH-LOGICAL-p176t-60130db07369d4bea8e453c977ff83cdad6f9739a036a49594c972dbad3236123</originalsourceid><addsrcrecordid>eNqFjUtLAzEURoMoOFYX_oOA66n35maSuUupT6i4acFdyUwSbImTOg_8-w7o3tVZfB_nCHGNsEQwdItLzaCsrk9EgVWFpTVoTkUBwLpUmt7PxcUwHAAUW1sXAl9zCu2UXC-H_efMcZ87maOkezlOfTOl0I2y_XBdF5KMKX9firPo0hCu_rgQ28eHzeq5XL89vazu1uURrRlLA0jgG7Bk2OsmuDroitq5GmNNrXfeRLbEDsg4zRXreVO-cZ4UGVS0EDe_3mOfv6YwjLtDnvpuTu4UKqOZifX_r0oboh9boE-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126495463</pqid></control><display><type>conference_proceeding</type><title>Molecular simulation of 3D turbulent channel flow</title><source>AIP Journals Complete</source><creator>Zeng Dandan ; Zhong Fengquan ; Fan, Jing</creator><creatorcontrib>Zeng Dandan ; Zhong Fengquan ; Fan, Jing</creatorcontrib><description>The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and Boussinesq eddy viscosity.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4902748</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boussinesq equations ; Channel flow ; Eddy viscosity ; Fluid dynamics ; Fluid flow ; Reynolds number ; Three dimensional flow ; Turbulent flow ; Turbulent mixing ; Velocity distribution ; Viscosity</subject><ispartof>AIP Conference Proceedings, 2014, Vol.1628 (1), p.1355</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><creatorcontrib>Zeng Dandan</creatorcontrib><creatorcontrib>Zhong Fengquan</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><title>Molecular simulation of 3D turbulent channel flow</title><title>AIP Conference Proceedings</title><description>The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and Boussinesq eddy viscosity.</description><subject>Boussinesq equations</subject><subject>Channel flow</subject><subject>Eddy viscosity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Reynolds number</subject><subject>Three dimensional flow</subject><subject>Turbulent flow</subject><subject>Turbulent mixing</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqFjUtLAzEURoMoOFYX_oOA66n35maSuUupT6i4acFdyUwSbImTOg_8-w7o3tVZfB_nCHGNsEQwdItLzaCsrk9EgVWFpTVoTkUBwLpUmt7PxcUwHAAUW1sXAl9zCu2UXC-H_efMcZ87maOkezlOfTOl0I2y_XBdF5KMKX9firPo0hCu_rgQ28eHzeq5XL89vazu1uURrRlLA0jgG7Bk2OsmuDroitq5GmNNrXfeRLbEDsg4zRXreVO-cZ4UGVS0EDe_3mOfv6YwjLtDnvpuTu4UKqOZifX_r0oboh9boE-I</recordid><startdate>20141209</startdate><enddate>20141209</enddate><creator>Zeng Dandan</creator><creator>Zhong Fengquan</creator><creator>Fan, Jing</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141209</creationdate><title>Molecular simulation of 3D turbulent channel flow</title><author>Zeng Dandan ; Zhong Fengquan ; Fan, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p176t-60130db07369d4bea8e453c977ff83cdad6f9739a036a49594c972dbad3236123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boussinesq equations</topic><topic>Channel flow</topic><topic>Eddy viscosity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Reynolds number</topic><topic>Three dimensional flow</topic><topic>Turbulent flow</topic><topic>Turbulent mixing</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng Dandan</creatorcontrib><creatorcontrib>Zhong Fengquan</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng Dandan</au><au>Zhong Fengquan</au><au>Fan, Jing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Molecular simulation of 3D turbulent channel flow</atitle><btitle>AIP Conference Proceedings</btitle><date>2014-12-09</date><risdate>2014</risdate><volume>1628</volume><issue>1</issue><epage>1355</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and Boussinesq eddy viscosity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4902748</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2014, Vol.1628 (1), p.1355 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2126499394 |
source | AIP Journals Complete |
subjects | Boussinesq equations Channel flow Eddy viscosity Fluid dynamics Fluid flow Reynolds number Three dimensional flow Turbulent flow Turbulent mixing Velocity distribution Viscosity |
title | Molecular simulation of 3D turbulent channel flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Molecular%20simulation%20of%203D%20turbulent%20channel%20flow&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Zeng%20Dandan&rft.date=2014-12-09&rft.volume=1628&rft.issue=1&rft.epage=1355&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4902748&rft_dat=%3Cproquest%3E2126499394%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126495463&rft_id=info:pmid/&rfr_iscdi=true |