Molecular simulation of 3D turbulent channel flow

The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zeng Dandan, Zhong Fengquan, Fan, Jing
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1355
container_issue 1
container_start_page
container_title
container_volume 1628
creator Zeng Dandan
Zhong Fengquan
Fan, Jing
description The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and Boussinesq eddy viscosity.
doi_str_mv 10.1063/1.4902748
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126499394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126499394</sourcerecordid><originalsourceid>FETCH-LOGICAL-p176t-60130db07369d4bea8e453c977ff83cdad6f9739a036a49594c972dbad3236123</originalsourceid><addsrcrecordid>eNqFjUtLAzEURoMoOFYX_oOA66n35maSuUupT6i4acFdyUwSbImTOg_8-w7o3tVZfB_nCHGNsEQwdItLzaCsrk9EgVWFpTVoTkUBwLpUmt7PxcUwHAAUW1sXAl9zCu2UXC-H_efMcZ87maOkezlOfTOl0I2y_XBdF5KMKX9firPo0hCu_rgQ28eHzeq5XL89vazu1uURrRlLA0jgG7Bk2OsmuDroitq5GmNNrXfeRLbEDsg4zRXreVO-cZ4UGVS0EDe_3mOfv6YwjLtDnvpuTu4UKqOZifX_r0oboh9boE-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126495463</pqid></control><display><type>conference_proceeding</type><title>Molecular simulation of 3D turbulent channel flow</title><source>AIP Journals Complete</source><creator>Zeng Dandan ; Zhong Fengquan ; Fan, Jing</creator><creatorcontrib>Zeng Dandan ; Zhong Fengquan ; Fan, Jing</creatorcontrib><description>The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and Boussinesq eddy viscosity.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4902748</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boussinesq equations ; Channel flow ; Eddy viscosity ; Fluid dynamics ; Fluid flow ; Reynolds number ; Three dimensional flow ; Turbulent flow ; Turbulent mixing ; Velocity distribution ; Viscosity</subject><ispartof>AIP Conference Proceedings, 2014, Vol.1628 (1), p.1355</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><creatorcontrib>Zeng Dandan</creatorcontrib><creatorcontrib>Zhong Fengquan</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><title>Molecular simulation of 3D turbulent channel flow</title><title>AIP Conference Proceedings</title><description>The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and Boussinesq eddy viscosity.</description><subject>Boussinesq equations</subject><subject>Channel flow</subject><subject>Eddy viscosity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Reynolds number</subject><subject>Three dimensional flow</subject><subject>Turbulent flow</subject><subject>Turbulent mixing</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqFjUtLAzEURoMoOFYX_oOA66n35maSuUupT6i4acFdyUwSbImTOg_8-w7o3tVZfB_nCHGNsEQwdItLzaCsrk9EgVWFpTVoTkUBwLpUmt7PxcUwHAAUW1sXAl9zCu2UXC-H_efMcZ87maOkezlOfTOl0I2y_XBdF5KMKX9firPo0hCu_rgQ28eHzeq5XL89vazu1uURrRlLA0jgG7Bk2OsmuDroitq5GmNNrXfeRLbEDsg4zRXreVO-cZ4UGVS0EDe_3mOfv6YwjLtDnvpuTu4UKqOZifX_r0oboh9boE-I</recordid><startdate>20141209</startdate><enddate>20141209</enddate><creator>Zeng Dandan</creator><creator>Zhong Fengquan</creator><creator>Fan, Jing</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141209</creationdate><title>Molecular simulation of 3D turbulent channel flow</title><author>Zeng Dandan ; Zhong Fengquan ; Fan, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p176t-60130db07369d4bea8e453c977ff83cdad6f9739a036a49594c972dbad3236123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boussinesq equations</topic><topic>Channel flow</topic><topic>Eddy viscosity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Reynolds number</topic><topic>Three dimensional flow</topic><topic>Turbulent flow</topic><topic>Turbulent mixing</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng Dandan</creatorcontrib><creatorcontrib>Zhong Fengquan</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng Dandan</au><au>Zhong Fengquan</au><au>Fan, Jing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Molecular simulation of 3D turbulent channel flow</atitle><btitle>AIP Conference Proceedings</btitle><date>2014-12-09</date><risdate>2014</risdate><volume>1628</volume><issue>1</issue><epage>1355</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5□10□5 and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and Boussinesq eddy viscosity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4902748</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2014, Vol.1628 (1), p.1355
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2126499394
source AIP Journals Complete
subjects Boussinesq equations
Channel flow
Eddy viscosity
Fluid dynamics
Fluid flow
Reynolds number
Three dimensional flow
Turbulent flow
Turbulent mixing
Velocity distribution
Viscosity
title Molecular simulation of 3D turbulent channel flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Molecular%20simulation%20of%203D%20turbulent%20channel%20flow&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Zeng%20Dandan&rft.date=2014-12-09&rft.volume=1628&rft.issue=1&rft.epage=1355&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4902748&rft_dat=%3Cproquest%3E2126499394%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126495463&rft_id=info:pmid/&rfr_iscdi=true