When the charge on a planar conductor is a function of its curvature
While there is no general relationship between the electric charge density on a conducting surface and its curvature, the two quantities can be functionally related in special circumstances. This paper presents a complete classification of two-dimensional conductors for which charge density is a fun...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2014-12, Vol.55 (12), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 55 |
creator | Cross, Daniel J |
description | While there is no general relationship between the electric charge density on a conducting surface and its curvature, the two quantities can be functionally related in special circumstances. This paper presents a complete classification of two-dimensional conductors for which charge density is a function of boundary curvature. Whenever the curvature function is non-injective, the conductor must transform under one of the planar symmetry groups. In particular, for the charge density on a closed conductor with smooth boundary to be a function of its curvature, the conductor must possess dihedral symmetry with a mirror line running through each curvature extremum. Several examples are presented along with explicit charge-curvature functions. Both increasing and decreasing functions were found. |
doi_str_mv | 10.1063/1.4903168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126493359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3565178371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-55004372eefd010dbeb6e70c257802b04cb0e1e8302f67193a60c8ae376ef5883</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWFcP_oOAJw9b33xu9ij1EwpeFI8hm76xW-qmJlnBf-9Ke_YyA8PDDAwhlwzmDLS4YXPZgmDaHJEZA9PWjVbmmMwAOK-5NOaUnOW8AWDMSDkjd-9rHGhZI_Vrlz6QxoE6utu6wSXq47AafYmJ9nlKwzj40k9ADLQvmfoxfbsyJjwnJ8FtM14cvCJvD_evi6d6-fL4vLhd1p4bVWqlAKRoOGJYAYNVh53GBjxXjQHegfQdIEMjgAfdsFY4Dd44FI3GoIwRFbna9-5S_BoxF7uJYxqmScsZ17IVQrX_UUzLRrSGT1qR6z3lU8w5YbC71H-69GMZ2L8rLbOHK8Uv8b1i4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647398247</pqid></control><display><type>article</type><title>When the charge on a planar conductor is a function of its curvature</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cross, Daniel J</creator><creatorcontrib>Cross, Daniel J</creatorcontrib><description>While there is no general relationship between the electric charge density on a conducting surface and its curvature, the two quantities can be functionally related in special circumstances. This paper presents a complete classification of two-dimensional conductors for which charge density is a function of boundary curvature. Whenever the curvature function is non-injective, the conductor must transform under one of the planar symmetry groups. In particular, for the charge density on a closed conductor with smooth boundary to be a function of its curvature, the conductor must possess dihedral symmetry with a mirror line running through each curvature extremum. Several examples are presented along with explicit charge-curvature functions. Both increasing and decreasing functions were found.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4903168</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boundary conditions ; Charge density ; Conduction ; Conductors ; Curvature ; Density ; Electric currents ; Physics ; Smooth boundaries ; Symmetry</subject><ispartof>Journal of mathematical physics, 2014-12, Vol.55 (12), p.1</ispartof><rights>Copyright American Institute of Physics Dec 2014</rights><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-55004372eefd010dbeb6e70c257802b04cb0e1e8302f67193a60c8ae376ef5883</citedby><cites>FETCH-LOGICAL-c285t-55004372eefd010dbeb6e70c257802b04cb0e1e8302f67193a60c8ae376ef5883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cross, Daniel J</creatorcontrib><title>When the charge on a planar conductor is a function of its curvature</title><title>Journal of mathematical physics</title><description>While there is no general relationship between the electric charge density on a conducting surface and its curvature, the two quantities can be functionally related in special circumstances. This paper presents a complete classification of two-dimensional conductors for which charge density is a function of boundary curvature. Whenever the curvature function is non-injective, the conductor must transform under one of the planar symmetry groups. In particular, for the charge density on a closed conductor with smooth boundary to be a function of its curvature, the conductor must possess dihedral symmetry with a mirror line running through each curvature extremum. Several examples are presented along with explicit charge-curvature functions. Both increasing and decreasing functions were found.</description><subject>Boundary conditions</subject><subject>Charge density</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Curvature</subject><subject>Density</subject><subject>Electric currents</subject><subject>Physics</subject><subject>Smooth boundaries</subject><subject>Symmetry</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWFcP_oOAJw9b33xu9ij1EwpeFI8hm76xW-qmJlnBf-9Ke_YyA8PDDAwhlwzmDLS4YXPZgmDaHJEZA9PWjVbmmMwAOK-5NOaUnOW8AWDMSDkjd-9rHGhZI_Vrlz6QxoE6utu6wSXq47AafYmJ9nlKwzj40k9ADLQvmfoxfbsyJjwnJ8FtM14cvCJvD_evi6d6-fL4vLhd1p4bVWqlAKRoOGJYAYNVh53GBjxXjQHegfQdIEMjgAfdsFY4Dd44FI3GoIwRFbna9-5S_BoxF7uJYxqmScsZ17IVQrX_UUzLRrSGT1qR6z3lU8w5YbC71H-69GMZ2L8rLbOHK8Uv8b1i4g</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Cross, Daniel J</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20141201</creationdate><title>When the charge on a planar conductor is a function of its curvature</title><author>Cross, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-55004372eefd010dbeb6e70c257802b04cb0e1e8302f67193a60c8ae376ef5883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary conditions</topic><topic>Charge density</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Curvature</topic><topic>Density</topic><topic>Electric currents</topic><topic>Physics</topic><topic>Smooth boundaries</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cross, Daniel J</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cross, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When the charge on a planar conductor is a function of its curvature</atitle><jtitle>Journal of mathematical physics</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>55</volume><issue>12</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>While there is no general relationship between the electric charge density on a conducting surface and its curvature, the two quantities can be functionally related in special circumstances. This paper presents a complete classification of two-dimensional conductors for which charge density is a function of boundary curvature. Whenever the curvature function is non-injective, the conductor must transform under one of the planar symmetry groups. In particular, for the charge density on a closed conductor with smooth boundary to be a function of its curvature, the conductor must possess dihedral symmetry with a mirror line running through each curvature extremum. Several examples are presented along with explicit charge-curvature functions. Both increasing and decreasing functions were found.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4903168</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2014-12, Vol.55 (12), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2126493359 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Boundary conditions Charge density Conduction Conductors Curvature Density Electric currents Physics Smooth boundaries Symmetry |
title | When the charge on a planar conductor is a function of its curvature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20the%20charge%20on%20a%20planar%20conductor%20is%20a%20function%20of%20its%20curvature&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Cross,%20Daniel%20J&rft.date=2014-12-01&rft.volume=55&rft.issue=12&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4903168&rft_dat=%3Cproquest_cross%3E3565178371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647398247&rft_id=info:pmid/&rfr_iscdi=true |