Nonisothermal crystallization kinetics and stability of leucite and kalsilite from K2O‐Al2O3‐SiO2 glasses

The crystallization mechanisms and elemental stability of leucite and kalsilite formed from K2O‐Al2O3‐SiO2 glasses were investigated by X‐ray powder diffraction (XRD), X‐ray fluorescence (XRF), Raman spectroscopy and differential scanning calorimetry (DSC). Glass samples with compositions along the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2019-01, Vol.102 (1), p.508-523
Hauptverfasser: Christopoulou, Georgia, Modarresifar, Farid, Allsopp, Benjamin L., Jones, Alan H., Bingham, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 1
container_start_page 508
container_title Journal of the American Ceramic Society
container_volume 102
creator Christopoulou, Georgia
Modarresifar, Farid
Allsopp, Benjamin L.
Jones, Alan H.
Bingham, Paul A.
description The crystallization mechanisms and elemental stability of leucite and kalsilite formed from K2O‐Al2O3‐SiO2 glasses were investigated by X‐ray powder diffraction (XRD), X‐ray fluorescence (XRF), Raman spectroscopy and differential scanning calorimetry (DSC). Glass samples with compositions along the leucite‐kalsilite tie‐line were produced by melt processing and were then heat‐treated at 850, 950, and 1250°C for times ranging from 5 minutes to 1000 hours. Kalsilite is an unstable phase that behaves as an intermediate precursor to leucite. Crystalline materials in which kalsilite is the major phase lose potassium upon prolonged heat treatment (1000 hours at 1250°C), in contrast to those with leucite, in which little or no compositional alteration is detected. The formation of leucite from stoichiometric kalsilite is accompanied by the formation of potassium‐doped alumina. The activation energies for leucite and kalsilite crystallization, determined via application of the Kissinger equation to thermal analysis data, were 579 and 548 kJ/mol, respectively. Finally, production of pure leucite can be achieved with more favorable crystallization kinetics when starting with off‐stoichiometric compositions.
doi_str_mv 10.1111/jace.15944
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2126484604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126484604</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2614-c88c987fab4f84678eefc1f5cec3cb57a5477222afda591125ddd8636645435b3</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4QSWWKfEjp04y6oqvxVZAGvLcWxw68TFToXCiiNwRk6CmzKbN6P39Eb6ALhE6QzFuV4LqWaIloQcgQmiFCW4RPkxmKRpipOC4fQUnIWwjicqGZmA9sl1Jrj-XflWWCj9EHphrfkSvXEd3JhO9UYGKLoGRqc21vQDdBpatZOmV6OxETbsDQW1dy18xNXv98_c4iqL-mwqDN-sCEGFc3CiY1Zd_OsUvN4sXxZ3yaq6vV_MV8kW54gkkjFZskKLmmhG8oIppSXSVCqZyZoWgpKiwBgL3QhaIoRp0zQsz_KcUJLROpuCq0Pv1ruPnQo9X7ud7-JLjhHOSSxNSUyhQ-rTWDXwrTet8ANHKd-z5HuWfGTJH-aL5bhlfx1YbDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126484604</pqid></control><display><type>article</type><title>Nonisothermal crystallization kinetics and stability of leucite and kalsilite from K2O‐Al2O3‐SiO2 glasses</title><source>Wiley Online Library All Journals</source><creator>Christopoulou, Georgia ; Modarresifar, Farid ; Allsopp, Benjamin L. ; Jones, Alan H. ; Bingham, Paul A.</creator><creatorcontrib>Christopoulou, Georgia ; Modarresifar, Farid ; Allsopp, Benjamin L. ; Jones, Alan H. ; Bingham, Paul A.</creatorcontrib><description>The crystallization mechanisms and elemental stability of leucite and kalsilite formed from K2O‐Al2O3‐SiO2 glasses were investigated by X‐ray powder diffraction (XRD), X‐ray fluorescence (XRF), Raman spectroscopy and differential scanning calorimetry (DSC). Glass samples with compositions along the leucite‐kalsilite tie‐line were produced by melt processing and were then heat‐treated at 850, 950, and 1250°C for times ranging from 5 minutes to 1000 hours. Kalsilite is an unstable phase that behaves as an intermediate precursor to leucite. Crystalline materials in which kalsilite is the major phase lose potassium upon prolonged heat treatment (1000 hours at 1250°C), in contrast to those with leucite, in which little or no compositional alteration is detected. The formation of leucite from stoichiometric kalsilite is accompanied by the formation of potassium‐doped alumina. The activation energies for leucite and kalsilite crystallization, determined via application of the Kissinger equation to thermal analysis data, were 579 and 548 kJ/mol, respectively. Finally, production of pure leucite can be achieved with more favorable crystallization kinetics when starting with off‐stoichiometric compositions.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.15944</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>activation energy ; Aluminum oxide ; Composition ; Crystallization ; Fluorescence ; Heat treatment ; kalsilite ; leucite ; Potassium ; Potassium aluminum silicates ; Raman spectroscopy ; reaction mechanism ; Silicon dioxide ; Stability ; Thermal analysis ; X ray spectra</subject><ispartof>Journal of the American Ceramic Society, 2019-01, Vol.102 (1), p.508-523</ispartof><rights>2018 The American Ceramic Society</rights><rights>2019 American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6017-0798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.15944$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.15944$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Christopoulou, Georgia</creatorcontrib><creatorcontrib>Modarresifar, Farid</creatorcontrib><creatorcontrib>Allsopp, Benjamin L.</creatorcontrib><creatorcontrib>Jones, Alan H.</creatorcontrib><creatorcontrib>Bingham, Paul A.</creatorcontrib><title>Nonisothermal crystallization kinetics and stability of leucite and kalsilite from K2O‐Al2O3‐SiO2 glasses</title><title>Journal of the American Ceramic Society</title><description>The crystallization mechanisms and elemental stability of leucite and kalsilite formed from K2O‐Al2O3‐SiO2 glasses were investigated by X‐ray powder diffraction (XRD), X‐ray fluorescence (XRF), Raman spectroscopy and differential scanning calorimetry (DSC). Glass samples with compositions along the leucite‐kalsilite tie‐line were produced by melt processing and were then heat‐treated at 850, 950, and 1250°C for times ranging from 5 minutes to 1000 hours. Kalsilite is an unstable phase that behaves as an intermediate precursor to leucite. Crystalline materials in which kalsilite is the major phase lose potassium upon prolonged heat treatment (1000 hours at 1250°C), in contrast to those with leucite, in which little or no compositional alteration is detected. The formation of leucite from stoichiometric kalsilite is accompanied by the formation of potassium‐doped alumina. The activation energies for leucite and kalsilite crystallization, determined via application of the Kissinger equation to thermal analysis data, were 579 and 548 kJ/mol, respectively. Finally, production of pure leucite can be achieved with more favorable crystallization kinetics when starting with off‐stoichiometric compositions.</description><subject>activation energy</subject><subject>Aluminum oxide</subject><subject>Composition</subject><subject>Crystallization</subject><subject>Fluorescence</subject><subject>Heat treatment</subject><subject>kalsilite</subject><subject>leucite</subject><subject>Potassium</subject><subject>Potassium aluminum silicates</subject><subject>Raman spectroscopy</subject><subject>reaction mechanism</subject><subject>Silicon dioxide</subject><subject>Stability</subject><subject>Thermal analysis</subject><subject>X ray spectra</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4QSWWKfEjp04y6oqvxVZAGvLcWxw68TFToXCiiNwRk6CmzKbN6P39Eb6ALhE6QzFuV4LqWaIloQcgQmiFCW4RPkxmKRpipOC4fQUnIWwjicqGZmA9sl1Jrj-XflWWCj9EHphrfkSvXEd3JhO9UYGKLoGRqc21vQDdBpatZOmV6OxETbsDQW1dy18xNXv98_c4iqL-mwqDN-sCEGFc3CiY1Zd_OsUvN4sXxZ3yaq6vV_MV8kW54gkkjFZskKLmmhG8oIppSXSVCqZyZoWgpKiwBgL3QhaIoRp0zQsz_KcUJLROpuCq0Pv1ruPnQo9X7ud7-JLjhHOSSxNSUyhQ-rTWDXwrTet8ANHKd-z5HuWfGTJH-aL5bhlfx1YbDE</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Christopoulou, Georgia</creator><creator>Modarresifar, Farid</creator><creator>Allsopp, Benjamin L.</creator><creator>Jones, Alan H.</creator><creator>Bingham, Paul A.</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6017-0798</orcidid></search><sort><creationdate>201901</creationdate><title>Nonisothermal crystallization kinetics and stability of leucite and kalsilite from K2O‐Al2O3‐SiO2 glasses</title><author>Christopoulou, Georgia ; Modarresifar, Farid ; Allsopp, Benjamin L. ; Jones, Alan H. ; Bingham, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2614-c88c987fab4f84678eefc1f5cec3cb57a5477222afda591125ddd8636645435b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>activation energy</topic><topic>Aluminum oxide</topic><topic>Composition</topic><topic>Crystallization</topic><topic>Fluorescence</topic><topic>Heat treatment</topic><topic>kalsilite</topic><topic>leucite</topic><topic>Potassium</topic><topic>Potassium aluminum silicates</topic><topic>Raman spectroscopy</topic><topic>reaction mechanism</topic><topic>Silicon dioxide</topic><topic>Stability</topic><topic>Thermal analysis</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christopoulou, Georgia</creatorcontrib><creatorcontrib>Modarresifar, Farid</creatorcontrib><creatorcontrib>Allsopp, Benjamin L.</creatorcontrib><creatorcontrib>Jones, Alan H.</creatorcontrib><creatorcontrib>Bingham, Paul A.</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christopoulou, Georgia</au><au>Modarresifar, Farid</au><au>Allsopp, Benjamin L.</au><au>Jones, Alan H.</au><au>Bingham, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonisothermal crystallization kinetics and stability of leucite and kalsilite from K2O‐Al2O3‐SiO2 glasses</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2019-01</date><risdate>2019</risdate><volume>102</volume><issue>1</issue><spage>508</spage><epage>523</epage><pages>508-523</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The crystallization mechanisms and elemental stability of leucite and kalsilite formed from K2O‐Al2O3‐SiO2 glasses were investigated by X‐ray powder diffraction (XRD), X‐ray fluorescence (XRF), Raman spectroscopy and differential scanning calorimetry (DSC). Glass samples with compositions along the leucite‐kalsilite tie‐line were produced by melt processing and were then heat‐treated at 850, 950, and 1250°C for times ranging from 5 minutes to 1000 hours. Kalsilite is an unstable phase that behaves as an intermediate precursor to leucite. Crystalline materials in which kalsilite is the major phase lose potassium upon prolonged heat treatment (1000 hours at 1250°C), in contrast to those with leucite, in which little or no compositional alteration is detected. The formation of leucite from stoichiometric kalsilite is accompanied by the formation of potassium‐doped alumina. The activation energies for leucite and kalsilite crystallization, determined via application of the Kissinger equation to thermal analysis data, were 579 and 548 kJ/mol, respectively. Finally, production of pure leucite can be achieved with more favorable crystallization kinetics when starting with off‐stoichiometric compositions.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.15944</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6017-0798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2019-01, Vol.102 (1), p.508-523
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2126484604
source Wiley Online Library All Journals
subjects activation energy
Aluminum oxide
Composition
Crystallization
Fluorescence
Heat treatment
kalsilite
leucite
Potassium
Potassium aluminum silicates
Raman spectroscopy
reaction mechanism
Silicon dioxide
Stability
Thermal analysis
X ray spectra
title Nonisothermal crystallization kinetics and stability of leucite and kalsilite from K2O‐Al2O3‐SiO2 glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonisothermal%20crystallization%20kinetics%20and%20stability%20of%20leucite%20and%20kalsilite%20from%20K2O%E2%80%90Al2O3%E2%80%90SiO2%20glasses&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Christopoulou,%20Georgia&rft.date=2019-01&rft.volume=102&rft.issue=1&rft.spage=508&rft.epage=523&rft.pages=508-523&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.15944&rft_dat=%3Cproquest_wiley%3E2126484604%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126484604&rft_id=info:pmid/&rfr_iscdi=true