Calibration of a Chromatic Confocal Microscope for Measuring a Colored Specimen

In this paper, a color correction method is proposed to improve measurement accuracy for chromatic confocal microscopy (CCM) when measuring a colored specimen. Characteristic curve shifting due to selective reflection from color surfaces was analyzed based on a laboratory CCM system developed by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2018-12, Vol.10 (6), p.1-9
Hauptverfasser: Yu, Qing, Zhang, Kun, Zhou, Ruilan, Cui, Changcai, Cheng, Fang, Shiwei Fu, Ye, Ruifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 6
container_start_page 1
container_title IEEE photonics journal
container_volume 10
creator Yu, Qing
Zhang, Kun
Zhou, Ruilan
Cui, Changcai
Cheng, Fang
Shiwei Fu
Ye, Ruifang
description In this paper, a color correction method is proposed to improve measurement accuracy for chromatic confocal microscopy (CCM) when measuring a colored specimen. Characteristic curve shifting due to selective reflection from color surfaces was analyzed based on a laboratory CCM system developed by the authors' team. Theoretically, when the color of the targeted surface is different from that represented by the central wavelength of the light source, the characteristic curve of CCM would have a notable deviation from that of an achromatic surface. In this study, this conclusion was verified through both simulation and experiments. Using a set of standard color calibration pieces, a color correction method was proposed accordingly to quantify the characteristic curve shifting. To validate the proposed method, a laser scanning confocal microscope Carl Zeiss LSM700 was used as the referencing system. Experimental data showed that with the color correction method, measurement errors can be controlled within 10 nm. Compared with the measurement without color correction, the measurement accuracy is significantly improved.
doi_str_mv 10.1109/JPHOT.2018.2875562
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2126463639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8496869</ieee_id><doaj_id>oai_doaj_org_article_33695799793849d6af7042817129a6a3</doaj_id><sourcerecordid>2126463639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-d59c772cc492f40cfc361158d159382e41227990a93b8ebb747732d8ebd303fc3</originalsourceid><addsrcrecordid>eNo9kc9PwyAcxYnRxDn9B_RC4rmT35SjadTNbJmJ80wopZOlK5VuB_976Wp24gt578ODB8A9RjOMkXp6_5ivNzOCcD4jueRckAswwYrRDAkmL88z59fgpu93CAmFuZqAdWEaX0Zz8KGFoYYGFt8x7NPewiK0dbCmgStvY-ht6BysQ4QrZ_pj9O12UIcmRFfBz85Zv3ftLbiqTdO7u_91Cr5eXzbFPFuu3xbF8zKzDPFDVnFlpSTWMkVqhmxtqcCY51UKRXPiGCZEKoWMomXuylIyKSmp0lhRRJN6ChYjtwpmp7vo9yb-6mC8Ph2EuNUmpkc0TlMqFE8wmchMVcLUEjGSY4mJMsLQxHocWV0MP0fXH_QuHGOb4muCiWCCCqqSioyq4S_66OrzrRjpoQR9KkEPJej_EpLpYTR559zZkGKIXCj6ByGegHA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126463639</pqid></control><display><type>article</type><title>Calibration of a Chromatic Confocal Microscope for Measuring a Colored Specimen</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Qing ; Zhang, Kun ; Zhou, Ruilan ; Cui, Changcai ; Cheng, Fang ; Shiwei Fu ; Ye, Ruifang</creator><creatorcontrib>Yu, Qing ; Zhang, Kun ; Zhou, Ruilan ; Cui, Changcai ; Cheng, Fang ; Shiwei Fu ; Ye, Ruifang</creatorcontrib><description>In this paper, a color correction method is proposed to improve measurement accuracy for chromatic confocal microscopy (CCM) when measuring a colored specimen. Characteristic curve shifting due to selective reflection from color surfaces was analyzed based on a laboratory CCM system developed by the authors' team. Theoretically, when the color of the targeted surface is different from that represented by the central wavelength of the light source, the characteristic curve of CCM would have a notable deviation from that of an achromatic surface. In this study, this conclusion was verified through both simulation and experiments. Using a set of standard color calibration pieces, a color correction method was proposed accordingly to quantify the characteristic curve shifting. To validate the proposed method, a laser scanning confocal microscope Carl Zeiss LSM700 was used as the referencing system. Experimental data showed that with the color correction method, measurement errors can be controlled within 10 nm. Compared with the measurement without color correction, the measurement accuracy is significantly improved.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2018.2875562</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Calibration ; characteristic curve shifting ; Chromatic confocal microscopy ; Color ; colour correction curve ; colour specimen ; Current measurement ; Image color analysis ; Light sources ; Microscopes ; Microscopy ; spectral information ; Surface waves ; Wavelength measurement</subject><ispartof>IEEE photonics journal, 2018-12, Vol.10 (6), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-d59c772cc492f40cfc361158d159382e41227990a93b8ebb747732d8ebd303fc3</citedby><cites>FETCH-LOGICAL-c405t-d59c772cc492f40cfc361158d159382e41227990a93b8ebb747732d8ebd303fc3</cites><orcidid>0000-0001-8767-3889 ; 0000-0002-9378-5905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8496869$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Yu, Qing</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Zhou, Ruilan</creatorcontrib><creatorcontrib>Cui, Changcai</creatorcontrib><creatorcontrib>Cheng, Fang</creatorcontrib><creatorcontrib>Shiwei Fu</creatorcontrib><creatorcontrib>Ye, Ruifang</creatorcontrib><title>Calibration of a Chromatic Confocal Microscope for Measuring a Colored Specimen</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>In this paper, a color correction method is proposed to improve measurement accuracy for chromatic confocal microscopy (CCM) when measuring a colored specimen. Characteristic curve shifting due to selective reflection from color surfaces was analyzed based on a laboratory CCM system developed by the authors' team. Theoretically, when the color of the targeted surface is different from that represented by the central wavelength of the light source, the characteristic curve of CCM would have a notable deviation from that of an achromatic surface. In this study, this conclusion was verified through both simulation and experiments. Using a set of standard color calibration pieces, a color correction method was proposed accordingly to quantify the characteristic curve shifting. To validate the proposed method, a laser scanning confocal microscope Carl Zeiss LSM700 was used as the referencing system. Experimental data showed that with the color correction method, measurement errors can be controlled within 10 nm. Compared with the measurement without color correction, the measurement accuracy is significantly improved.</description><subject>Calibration</subject><subject>characteristic curve shifting</subject><subject>Chromatic confocal microscopy</subject><subject>Color</subject><subject>colour correction curve</subject><subject>colour specimen</subject><subject>Current measurement</subject><subject>Image color analysis</subject><subject>Light sources</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>spectral information</subject><subject>Surface waves</subject><subject>Wavelength measurement</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kc9PwyAcxYnRxDn9B_RC4rmT35SjadTNbJmJ80wopZOlK5VuB_976Wp24gt578ODB8A9RjOMkXp6_5ivNzOCcD4jueRckAswwYrRDAkmL88z59fgpu93CAmFuZqAdWEaX0Zz8KGFoYYGFt8x7NPewiK0dbCmgStvY-ht6BysQ4QrZ_pj9O12UIcmRFfBz85Zv3ftLbiqTdO7u_91Cr5eXzbFPFuu3xbF8zKzDPFDVnFlpSTWMkVqhmxtqcCY51UKRXPiGCZEKoWMomXuylIyKSmp0lhRRJN6ChYjtwpmp7vo9yb-6mC8Ph2EuNUmpkc0TlMqFE8wmchMVcLUEjGSY4mJMsLQxHocWV0MP0fXH_QuHGOb4muCiWCCCqqSioyq4S_66OrzrRjpoQR9KkEPJej_EpLpYTR559zZkGKIXCj6ByGegHA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Yu, Qing</creator><creator>Zhang, Kun</creator><creator>Zhou, Ruilan</creator><creator>Cui, Changcai</creator><creator>Cheng, Fang</creator><creator>Shiwei Fu</creator><creator>Ye, Ruifang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8767-3889</orcidid><orcidid>https://orcid.org/0000-0002-9378-5905</orcidid></search><sort><creationdate>20181201</creationdate><title>Calibration of a Chromatic Confocal Microscope for Measuring a Colored Specimen</title><author>Yu, Qing ; Zhang, Kun ; Zhou, Ruilan ; Cui, Changcai ; Cheng, Fang ; Shiwei Fu ; Ye, Ruifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-d59c772cc492f40cfc361158d159382e41227990a93b8ebb747732d8ebd303fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calibration</topic><topic>characteristic curve shifting</topic><topic>Chromatic confocal microscopy</topic><topic>Color</topic><topic>colour correction curve</topic><topic>colour specimen</topic><topic>Current measurement</topic><topic>Image color analysis</topic><topic>Light sources</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>spectral information</topic><topic>Surface waves</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Qing</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Zhou, Ruilan</creatorcontrib><creatorcontrib>Cui, Changcai</creatorcontrib><creatorcontrib>Cheng, Fang</creatorcontrib><creatorcontrib>Shiwei Fu</creatorcontrib><creatorcontrib>Ye, Ruifang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Qing</au><au>Zhang, Kun</au><au>Zhou, Ruilan</au><au>Cui, Changcai</au><au>Cheng, Fang</au><au>Shiwei Fu</au><au>Ye, Ruifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration of a Chromatic Confocal Microscope for Measuring a Colored Specimen</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>10</volume><issue>6</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>In this paper, a color correction method is proposed to improve measurement accuracy for chromatic confocal microscopy (CCM) when measuring a colored specimen. Characteristic curve shifting due to selective reflection from color surfaces was analyzed based on a laboratory CCM system developed by the authors' team. Theoretically, when the color of the targeted surface is different from that represented by the central wavelength of the light source, the characteristic curve of CCM would have a notable deviation from that of an achromatic surface. In this study, this conclusion was verified through both simulation and experiments. Using a set of standard color calibration pieces, a color correction method was proposed accordingly to quantify the characteristic curve shifting. To validate the proposed method, a laser scanning confocal microscope Carl Zeiss LSM700 was used as the referencing system. Experimental data showed that with the color correction method, measurement errors can be controlled within 10 nm. Compared with the measurement without color correction, the measurement accuracy is significantly improved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2018.2875562</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8767-3889</orcidid><orcidid>https://orcid.org/0000-0002-9378-5905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2018-12, Vol.10 (6), p.1-9
issn 1943-0655
1943-0647
language eng
recordid cdi_proquest_journals_2126463639
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Calibration
characteristic curve shifting
Chromatic confocal microscopy
Color
colour correction curve
colour specimen
Current measurement
Image color analysis
Light sources
Microscopes
Microscopy
spectral information
Surface waves
Wavelength measurement
title Calibration of a Chromatic Confocal Microscope for Measuring a Colored Specimen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20of%20a%20Chromatic%20Confocal%20Microscope%20for%20Measuring%20a%20Colored%20Specimen&rft.jtitle=IEEE%20photonics%20journal&rft.au=Yu,%20Qing&rft.date=2018-12-01&rft.volume=10&rft.issue=6&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2018.2875562&rft_dat=%3Cproquest_doaj_%3E2126463639%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126463639&rft_id=info:pmid/&rft_ieee_id=8496869&rft_doaj_id=oai_doaj_org_article_33695799793849d6af7042817129a6a3&rfr_iscdi=true