gene-based model to simulate soybean development and yield responses to environment

Realizing the potential of agricultural genomics into practical applications requires quantitative predictions for complex traits and different genotypes and environmental conditions. The objective of this study was to develop and test a procedure for quantitative prediction of phenotypes as a funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crop science 2006-01, Vol.46 (1), p.456-466
Hauptverfasser: Messina, C.D, Jones, J.W, Boote, K.J, Vallejos, C.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 1
container_start_page 456
container_title Crop science
container_volume 46
creator Messina, C.D
Jones, J.W
Boote, K.J
Vallejos, C.E
description Realizing the potential of agricultural genomics into practical applications requires quantitative predictions for complex traits and different genotypes and environmental conditions. The objective of this study was to develop and test a procedure for quantitative prediction of phenotypes as a function of environment and specific genetic loci in soybean [Glycine max (L.) Merrill]. We combined the ecophysiological model CROPGRO-Soybean with linear models that predict cultivar-specific parameters as functions of E loci. The procedure involved three steps: (i) a field experiment was conducted in Florida in 2001 to obtain phenotypic data for a set of near-isogenic lines (NILs) with known genotypes at six E loci; (ii) we used these data to estimate cultivar-specific parameters for CROPGRO-Soybean, minimizing root mean square error (RMSE) between observed and simulated values; (iii) these parameters were then expressed as linear functions of the (known) E loci. CROPGRO-Soybean predicted various phenological stages for the same NILs grown in 2002 in Florida with a RMSE of about 5 d using the E loci-derived parameters. A second evaluation of the approach used phenotypic data from cultivar trials conducted in Illinois. Cultivars were genotyped at the E loci using microsatellites. The model predicted time to maturity in the Illinois variety trials with RMSE around 7.5 d; it also explained 75% of the time-to-maturity variance and 54% of the yield variance. Our results suggest that gene-based approaches can effectively use agricultural genomics data for cultivar performance prediction. This technology may have multiple uses in plant breeding.
doi_str_mv 10.2135/cropsci2005.04-0372
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_212622782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A142148167</galeid><sourcerecordid>A142148167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5692-2fe226166e5bc29e7de4366e19e2f96224aa8a6ea60cb145f2bf039af5b295f13</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxU1podu0n6CHmkKP3o5Gf7w-BtM0gUBKt4HehGyPFgdbciVvwn77ynihOeRQdBAafu-9ES_LPjLYIuPyaxv8FNseAeQWRAG8xFfZhgkuC1CSv842AIwVbMd_v83exfgAAGVVyk22P5CjojGRunz0HQ357PPYj8fBzJRHf2rIuLyjRxr8NJKbc-O6_NTT0OWB4uRdpLhoyD32wbsFeZ-9sWaI9OF8X2T3V99-1dfF7d33m_rytmilqrBAS4iKKUWyabGisiPB04tVhLZSiMKYnVFkFLQNE9JiY4FXxsoGK2kZv8g-r75T8H-OFGf94I_BpUiNDJNBucMEFSt0MAPp3lk_B9Muvw5m8I5sn8aXTCATO6bKxG9f4NPpaOzbFwV8FaQSYgxk9RT60YSTZqCXdvSzdjQIvbSTVF_Ou5vYmsEG49o-_pOWokKUVeKuVu4pxZ7-x1rX-xrrn3c_9vXNMgdxDvy0GlnjtTmEFHa_R2AcGMgSFON_Ab3Jr4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212622782</pqid></control><display><type>article</type><title>gene-based model to simulate soybean development and yield responses to environment</title><source>Wiley-Blackwell Journals</source><source>Alma/SFX Local Collection</source><creator>Messina, C.D ; Jones, J.W ; Boote, K.J ; Vallejos, C.E</creator><creatorcontrib>Messina, C.D ; Jones, J.W ; Boote, K.J ; Vallejos, C.E</creatorcontrib><description>Realizing the potential of agricultural genomics into practical applications requires quantitative predictions for complex traits and different genotypes and environmental conditions. The objective of this study was to develop and test a procedure for quantitative prediction of phenotypes as a function of environment and specific genetic loci in soybean [Glycine max (L.) Merrill]. We combined the ecophysiological model CROPGRO-Soybean with linear models that predict cultivar-specific parameters as functions of E loci. The procedure involved three steps: (i) a field experiment was conducted in Florida in 2001 to obtain phenotypic data for a set of near-isogenic lines (NILs) with known genotypes at six E loci; (ii) we used these data to estimate cultivar-specific parameters for CROPGRO-Soybean, minimizing root mean square error (RMSE) between observed and simulated values; (iii) these parameters were then expressed as linear functions of the (known) E loci. CROPGRO-Soybean predicted various phenological stages for the same NILs grown in 2002 in Florida with a RMSE of about 5 d using the E loci-derived parameters. A second evaluation of the approach used phenotypic data from cultivar trials conducted in Illinois. Cultivars were genotyped at the E loci using microsatellites. The model predicted time to maturity in the Illinois variety trials with RMSE around 7.5 d; it also explained 75% of the time-to-maturity variance and 54% of the yield variance. Our results suggest that gene-based approaches can effectively use agricultural genomics data for cultivar performance prediction. This technology may have multiple uses in plant breeding.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.2135/cropsci2005.04-0372</identifier><identifier>CODEN: CRPSAY</identifier><language>eng</language><publisher>Madison, WI: The Crop Science Society of America, Inc</publisher><subject>Adaptation to environment and cultivation conditions ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; crop models ; Crop science ; crop yield ; cultivar performance prediction ; Cultivars ; Environment ; Environmental aspects ; Environmental conditions ; Fundamental and applied biological sciences. Psychology ; Gene loci ; Genetic aspects ; Genetics and breeding of economic plants ; Genomics ; genotype ; Genotype &amp; phenotype ; Genotypes ; Glycine max ; loci ; microsatellite repeats ; molecular sequence data ; phenotype ; Phenotypes ; Plant breeding ; plant development ; Plant genetic engineering ; simulation models ; Soybean ; Soybeans ; Varietal selection. Specialized plant breeding, plant breeding aims</subject><ispartof>Crop science, 2006-01, Vol.46 (1), p.456-466</ispartof><rights>Crop Science Society of America</rights><rights>2006 INIST-CNRS</rights><rights>COPYRIGHT 2006 Crop Science Society of America</rights><rights>Copyright American Society of Agronomy Jan/Feb 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5692-2fe226166e5bc29e7de4366e19e2f96224aa8a6ea60cb145f2bf039af5b295f13</citedby><cites>FETCH-LOGICAL-c5692-2fe226166e5bc29e7de4366e19e2f96224aa8a6ea60cb145f2bf039af5b295f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2135%2Fcropsci2005.04-0372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2135%2Fcropsci2005.04-0372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17492259$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Messina, C.D</creatorcontrib><creatorcontrib>Jones, J.W</creatorcontrib><creatorcontrib>Boote, K.J</creatorcontrib><creatorcontrib>Vallejos, C.E</creatorcontrib><title>gene-based model to simulate soybean development and yield responses to environment</title><title>Crop science</title><description>Realizing the potential of agricultural genomics into practical applications requires quantitative predictions for complex traits and different genotypes and environmental conditions. The objective of this study was to develop and test a procedure for quantitative prediction of phenotypes as a function of environment and specific genetic loci in soybean [Glycine max (L.) Merrill]. We combined the ecophysiological model CROPGRO-Soybean with linear models that predict cultivar-specific parameters as functions of E loci. The procedure involved three steps: (i) a field experiment was conducted in Florida in 2001 to obtain phenotypic data for a set of near-isogenic lines (NILs) with known genotypes at six E loci; (ii) we used these data to estimate cultivar-specific parameters for CROPGRO-Soybean, minimizing root mean square error (RMSE) between observed and simulated values; (iii) these parameters were then expressed as linear functions of the (known) E loci. CROPGRO-Soybean predicted various phenological stages for the same NILs grown in 2002 in Florida with a RMSE of about 5 d using the E loci-derived parameters. A second evaluation of the approach used phenotypic data from cultivar trials conducted in Illinois. Cultivars were genotyped at the E loci using microsatellites. The model predicted time to maturity in the Illinois variety trials with RMSE around 7.5 d; it also explained 75% of the time-to-maturity variance and 54% of the yield variance. Our results suggest that gene-based approaches can effectively use agricultural genomics data for cultivar performance prediction. This technology may have multiple uses in plant breeding.</description><subject>Adaptation to environment and cultivation conditions</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>crop models</subject><subject>Crop science</subject><subject>crop yield</subject><subject>cultivar performance prediction</subject><subject>Cultivars</subject><subject>Environment</subject><subject>Environmental aspects</subject><subject>Environmental conditions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene loci</subject><subject>Genetic aspects</subject><subject>Genetics and breeding of economic plants</subject><subject>Genomics</subject><subject>genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Glycine max</subject><subject>loci</subject><subject>microsatellite repeats</subject><subject>molecular sequence data</subject><subject>phenotype</subject><subject>Phenotypes</subject><subject>Plant breeding</subject><subject>plant development</subject><subject>Plant genetic engineering</subject><subject>simulation models</subject><subject>Soybean</subject><subject>Soybeans</subject><subject>Varietal selection. Specialized plant breeding, plant breeding aims</subject><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU9r3DAQxU1podu0n6CHmkKP3o5Gf7w-BtM0gUBKt4HehGyPFgdbciVvwn77ynihOeRQdBAafu-9ES_LPjLYIuPyaxv8FNseAeQWRAG8xFfZhgkuC1CSv842AIwVbMd_v83exfgAAGVVyk22P5CjojGRunz0HQ357PPYj8fBzJRHf2rIuLyjRxr8NJKbc-O6_NTT0OWB4uRdpLhoyD32wbsFeZ-9sWaI9OF8X2T3V99-1dfF7d33m_rytmilqrBAS4iKKUWyabGisiPB04tVhLZSiMKYnVFkFLQNE9JiY4FXxsoGK2kZv8g-r75T8H-OFGf94I_BpUiNDJNBucMEFSt0MAPp3lk_B9Muvw5m8I5sn8aXTCATO6bKxG9f4NPpaOzbFwV8FaQSYgxk9RT60YSTZqCXdvSzdjQIvbSTVF_Ou5vYmsEG49o-_pOWokKUVeKuVu4pxZ7-x1rX-xrrn3c_9vXNMgdxDvy0GlnjtTmEFHa_R2AcGMgSFON_Ab3Jr4o</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Messina, C.D</creator><creator>Jones, J.W</creator><creator>Boote, K.J</creator><creator>Vallejos, C.E</creator><general>The Crop Science Society of America, Inc</general><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>200601</creationdate><title>gene-based model to simulate soybean development and yield responses to environment</title><author>Messina, C.D ; Jones, J.W ; Boote, K.J ; Vallejos, C.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5692-2fe226166e5bc29e7de4366e19e2f96224aa8a6ea60cb145f2bf039af5b295f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptation to environment and cultivation conditions</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>crop models</topic><topic>Crop science</topic><topic>crop yield</topic><topic>cultivar performance prediction</topic><topic>Cultivars</topic><topic>Environment</topic><topic>Environmental aspects</topic><topic>Environmental conditions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene loci</topic><topic>Genetic aspects</topic><topic>Genetics and breeding of economic plants</topic><topic>Genomics</topic><topic>genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Glycine max</topic><topic>loci</topic><topic>microsatellite repeats</topic><topic>molecular sequence data</topic><topic>phenotype</topic><topic>Phenotypes</topic><topic>Plant breeding</topic><topic>plant development</topic><topic>Plant genetic engineering</topic><topic>simulation models</topic><topic>Soybean</topic><topic>Soybeans</topic><topic>Varietal selection. Specialized plant breeding, plant breeding aims</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messina, C.D</creatorcontrib><creatorcontrib>Jones, J.W</creatorcontrib><creatorcontrib>Boote, K.J</creatorcontrib><creatorcontrib>Vallejos, C.E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messina, C.D</au><au>Jones, J.W</au><au>Boote, K.J</au><au>Vallejos, C.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>gene-based model to simulate soybean development and yield responses to environment</atitle><jtitle>Crop science</jtitle><date>2006-01</date><risdate>2006</risdate><volume>46</volume><issue>1</issue><spage>456</spage><epage>466</epage><pages>456-466</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><coden>CRPSAY</coden><abstract>Realizing the potential of agricultural genomics into practical applications requires quantitative predictions for complex traits and different genotypes and environmental conditions. The objective of this study was to develop and test a procedure for quantitative prediction of phenotypes as a function of environment and specific genetic loci in soybean [Glycine max (L.) Merrill]. We combined the ecophysiological model CROPGRO-Soybean with linear models that predict cultivar-specific parameters as functions of E loci. The procedure involved three steps: (i) a field experiment was conducted in Florida in 2001 to obtain phenotypic data for a set of near-isogenic lines (NILs) with known genotypes at six E loci; (ii) we used these data to estimate cultivar-specific parameters for CROPGRO-Soybean, minimizing root mean square error (RMSE) between observed and simulated values; (iii) these parameters were then expressed as linear functions of the (known) E loci. CROPGRO-Soybean predicted various phenological stages for the same NILs grown in 2002 in Florida with a RMSE of about 5 d using the E loci-derived parameters. A second evaluation of the approach used phenotypic data from cultivar trials conducted in Illinois. Cultivars were genotyped at the E loci using microsatellites. The model predicted time to maturity in the Illinois variety trials with RMSE around 7.5 d; it also explained 75% of the time-to-maturity variance and 54% of the yield variance. Our results suggest that gene-based approaches can effectively use agricultural genomics data for cultivar performance prediction. This technology may have multiple uses in plant breeding.</abstract><cop>Madison, WI</cop><pub>The Crop Science Society of America, Inc</pub><doi>10.2135/cropsci2005.04-0372</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-183X
ispartof Crop science, 2006-01, Vol.46 (1), p.456-466
issn 0011-183X
1435-0653
language eng
recordid cdi_proquest_journals_212622782
source Wiley-Blackwell Journals; Alma/SFX Local Collection
subjects Adaptation to environment and cultivation conditions
Agronomy. Soil science and plant productions
Biological and medical sciences
crop models
Crop science
crop yield
cultivar performance prediction
Cultivars
Environment
Environmental aspects
Environmental conditions
Fundamental and applied biological sciences. Psychology
Gene loci
Genetic aspects
Genetics and breeding of economic plants
Genomics
genotype
Genotype & phenotype
Genotypes
Glycine max
loci
microsatellite repeats
molecular sequence data
phenotype
Phenotypes
Plant breeding
plant development
Plant genetic engineering
simulation models
Soybean
Soybeans
Varietal selection. Specialized plant breeding, plant breeding aims
title gene-based model to simulate soybean development and yield responses to environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=gene-based%20model%20to%20simulate%20soybean%20development%20and%20yield%20responses%20to%20environment&rft.jtitle=Crop%20science&rft.au=Messina,%20C.D&rft.date=2006-01&rft.volume=46&rft.issue=1&rft.spage=456&rft.epage=466&rft.pages=456-466&rft.issn=0011-183X&rft.eissn=1435-0653&rft.coden=CRPSAY&rft_id=info:doi/10.2135/cropsci2005.04-0372&rft_dat=%3Cgale_proqu%3EA142148167%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212622782&rft_id=info:pmid/&rft_galeid=A142148167&rfr_iscdi=true