CONVEXITY AND THIMM’S TRICK

In this paper we study topological properties of maps constructed by Thimm's trick with Guillemin and Sternberg's action coordinates on a connected Hamiltonian G -manifold M . Since these maps only generate a Hamiltonian torus action on an open dense subset of M , convexity and fibre-conne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2018-12, Vol.23 (4), p.963-987
1. Verfasser: LANE, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 987
container_issue 4
container_start_page 963
container_title Transformation groups
container_volume 23
creator LANE, J.
description In this paper we study topological properties of maps constructed by Thimm's trick with Guillemin and Sternberg's action coordinates on a connected Hamiltonian G -manifold M . Since these maps only generate a Hamiltonian torus action on an open dense subset of M , convexity and fibre-connectedness of such maps does not follow immediately from Atiyah–Guillemin–Sternberg's convexity theorem, even if M is compact. The core contribution of this paper is to provide a simple argument circumventing this difficulty. In the case where the map is constructed from a chain of subalgebras we prove that the image is given by a list of inequalities that can be computed explicitly in many examples. This generalizes the fact that the images of the classical Gelfand–Zeitlin systems on coadjoint orbits are Gelfand–Zeitlin polytopes. Moreover, we prove that if such a map generates a completely integrable torus action on an open dense subset of M , then all its fibres are smooth embedded submanifolds.
doi_str_mv 10.1007/s00031-017-9436-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126139933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126139933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-11210fedd9854aed8f0194340e2616cbf4e5549a46ff8eef13f1a707a4ae27073</originalsourceid><addsrcrecordid>eNp1kM9OwzAMxiMEEmPwAByQKnEO2EmatsepbKxifyQoaJyi0iaICbaRbAduvAavx5PgqkicONmyf_5sf4ydIlwgQHIZAEAiB0x4pqTmyR7rYUyVONWLfcohlZwa4pAdhbAEArXWPXaWz2cPw0VRPkaD2VVUjovp9Pvz6y4qb4v85pgduOo12JPf2Gf3o2GZj_lkfl3kgwmvJeotRxQIzjZNlsaqsk3qAOkKBVZo1PWTUzaOVVYp7VxqrUPpsEogqQgWFGWfnXe6G79-39mwNcv1zq9opRFIGjLLpCQKO6r26xC8dWbjX94q_2EQTOuC6Vww9JxpXTCtsuhmArGrZ-v_lP8f-gE031uC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126139933</pqid></control><display><type>article</type><title>CONVEXITY AND THIMM’S TRICK</title><source>SpringerLink Journals - AutoHoldings</source><creator>LANE, J.</creator><creatorcontrib>LANE, J.</creatorcontrib><description>In this paper we study topological properties of maps constructed by Thimm's trick with Guillemin and Sternberg's action coordinates on a connected Hamiltonian G -manifold M . Since these maps only generate a Hamiltonian torus action on an open dense subset of M , convexity and fibre-connectedness of such maps does not follow immediately from Atiyah–Guillemin–Sternberg's convexity theorem, even if M is compact. The core contribution of this paper is to provide a simple argument circumventing this difficulty. In the case where the map is constructed from a chain of subalgebras we prove that the image is given by a list of inequalities that can be computed explicitly in many examples. This generalizes the fact that the images of the classical Gelfand–Zeitlin systems on coadjoint orbits are Gelfand–Zeitlin polytopes. Moreover, we prove that if such a map generates a completely integrable torus action on an open dense subset of M , then all its fibres are smooth embedded submanifolds.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-017-9436-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Convexity ; Lie Groups ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Polytopes ; Topological Groups ; Toruses</subject><ispartof>Transformation groups, 2018-12, Vol.23 (4), p.963-987</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-11210fedd9854aed8f0194340e2616cbf4e5549a46ff8eef13f1a707a4ae27073</citedby><cites>FETCH-LOGICAL-c316t-11210fedd9854aed8f0194340e2616cbf4e5549a46ff8eef13f1a707a4ae27073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00031-017-9436-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00031-017-9436-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>LANE, J.</creatorcontrib><title>CONVEXITY AND THIMM’S TRICK</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>In this paper we study topological properties of maps constructed by Thimm's trick with Guillemin and Sternberg's action coordinates on a connected Hamiltonian G -manifold M . Since these maps only generate a Hamiltonian torus action on an open dense subset of M , convexity and fibre-connectedness of such maps does not follow immediately from Atiyah–Guillemin–Sternberg's convexity theorem, even if M is compact. The core contribution of this paper is to provide a simple argument circumventing this difficulty. In the case where the map is constructed from a chain of subalgebras we prove that the image is given by a list of inequalities that can be computed explicitly in many examples. This generalizes the fact that the images of the classical Gelfand–Zeitlin systems on coadjoint orbits are Gelfand–Zeitlin polytopes. Moreover, we prove that if such a map generates a completely integrable torus action on an open dense subset of M , then all its fibres are smooth embedded submanifolds.</description><subject>Algebra</subject><subject>Convexity</subject><subject>Lie Groups</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polytopes</subject><subject>Topological Groups</subject><subject>Toruses</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9OwzAMxiMEEmPwAByQKnEO2EmatsepbKxifyQoaJyi0iaICbaRbAduvAavx5PgqkicONmyf_5sf4ydIlwgQHIZAEAiB0x4pqTmyR7rYUyVONWLfcohlZwa4pAdhbAEArXWPXaWz2cPw0VRPkaD2VVUjovp9Pvz6y4qb4v85pgduOo12JPf2Gf3o2GZj_lkfl3kgwmvJeotRxQIzjZNlsaqsk3qAOkKBVZo1PWTUzaOVVYp7VxqrUPpsEogqQgWFGWfnXe6G79-39mwNcv1zq9opRFIGjLLpCQKO6r26xC8dWbjX94q_2EQTOuC6Vww9JxpXTCtsuhmArGrZ-v_lP8f-gE031uC</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>LANE, J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>CONVEXITY AND THIMM’S TRICK</title><author>LANE, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-11210fedd9854aed8f0194340e2616cbf4e5549a46ff8eef13f1a707a4ae27073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Convexity</topic><topic>Lie Groups</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polytopes</topic><topic>Topological Groups</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LANE, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LANE, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONVEXITY AND THIMM’S TRICK</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>23</volume><issue>4</issue><spage>963</spage><epage>987</epage><pages>963-987</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>In this paper we study topological properties of maps constructed by Thimm's trick with Guillemin and Sternberg's action coordinates on a connected Hamiltonian G -manifold M . Since these maps only generate a Hamiltonian torus action on an open dense subset of M , convexity and fibre-connectedness of such maps does not follow immediately from Atiyah–Guillemin–Sternberg's convexity theorem, even if M is compact. The core contribution of this paper is to provide a simple argument circumventing this difficulty. In the case where the map is constructed from a chain of subalgebras we prove that the image is given by a list of inequalities that can be computed explicitly in many examples. This generalizes the fact that the images of the classical Gelfand–Zeitlin systems on coadjoint orbits are Gelfand–Zeitlin polytopes. Moreover, we prove that if such a map generates a completely integrable torus action on an open dense subset of M , then all its fibres are smooth embedded submanifolds.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-017-9436-7</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4362
ispartof Transformation groups, 2018-12, Vol.23 (4), p.963-987
issn 1083-4362
1531-586X
language eng
recordid cdi_proquest_journals_2126139933
source SpringerLink Journals - AutoHoldings
subjects Algebra
Convexity
Lie Groups
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Polytopes
Topological Groups
Toruses
title CONVEXITY AND THIMM’S TRICK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONVEXITY%20AND%20THIMM%E2%80%99S%20TRICK&rft.jtitle=Transformation%20groups&rft.au=LANE,%20J.&rft.date=2018-12-01&rft.volume=23&rft.issue=4&rft.spage=963&rft.epage=987&rft.pages=963-987&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-017-9436-7&rft_dat=%3Cproquest_cross%3E2126139933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126139933&rft_id=info:pmid/&rfr_iscdi=true