Influences of U Sources and Forms on Its Bioaccumulation in Indian Mustard and Sunflower
Anthropogenic activities, such as ore mining and processing, nuclear power generation, and weapon tests, have generated uranium (U) contamination to soils and waters. The mobility and bioavailability of U are influenced by its sources, speciation, and plant species. Phytoremediation has emerged as a...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2018-11, Vol.229 (11), p.1-11, Article 369 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Water, air, and soil pollution |
container_volume | 229 |
creator | Meng, Fande Jin, Decheng Guo, Kai Larson, Steven L. Ballard, John H. Chen, Liangmei Arslan, Zikri Yuan, Guodong White, Jeremy R. Zhou, Lixiang Ma, Youhua Waggoner, Charles A. Han, Fengxiang X. |
description | Anthropogenic activities, such as ore mining and processing, nuclear power generation, and weapon tests, have generated uranium (U) contamination to soils and waters. The mobility and bioavailability of U are influenced by its sources, speciation, and plant species. Phytoremediation has emerged as an environmentally friendly, cost-effective green technology to remediate radioisotope- and metal-contaminated soils. The main objective of this study was to explore the feasibility using sunflower (
Helianthus annuus
) and Indian mustard (
Brassica juncea
) in cleaning up soils with UO
2
, UO
3
, and UO
2
(NO
3
)
2
. Uranium was found to be bioaccumulated in plant roots more than plant shoots. Uranium uptake by both plant species was significantly higher from the UO
3
- and uranyl-contaminated soils than from UO
2
-contaminated soils. UO
3
- and UO
2
(NO
3
)
2
-contaminated soils showed higher exchangeable, weak acid extractable, and labile U than the UO
2
-contaminated soils. After a growing season, three U forms decreased as redistribution/transformation of U resulted in U species with lower extractability. This study indicates the importance of U speciation in soil with regard to the potential use of sunflower and Indian mustard for phytoremediation of U-contaminated soils. |
doi_str_mv | 10.1007/s11270-018-4023-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2126075795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A560246142</galeid><sourcerecordid>A560246142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-da81fd239ab57f1da7d612d3c628f322d5d92d6ed745a2e974e0c4f264d4149d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A66nJnWQyWdbio1BxUQvuQsyjTOkkNZlB_PemjuDKZBHu4Xz33hyErgmeEYz5bSIEOC4xaUqKoSr5CZoQxqsSRAWnaIIxFWUtuDhHFyntcD6i4RP0tvRuP1ivbSqCKzbFOgzxWChviocQuyz7Ytmn4q4NSuuhG_aqb7PWZtmbVvnieUi9iuYHWQ-5X_i08RKdObVP9ur3naLNw_3r4qlcvTwuF_NVqSvG-tKohjgDlVDvjDtiFDc1AVPpGhpXARhmBJjaGk6ZAis4tVhTBzU1lFBhqim6GfseYvgYbOrlLv_A55ESCNSYMy5Yds1G11btrWy9C31UOl9ju1YHb12b9TmrMdCaUMgAGQEdQ0rROnmIbafilyRYHhOXY-IyJy6PiUueGRiZlL1-a-PfKv9D33vXgn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126075795</pqid></control><display><type>article</type><title>Influences of U Sources and Forms on Its Bioaccumulation in Indian Mustard and Sunflower</title><source>SpringerLink Journals - AutoHoldings</source><creator>Meng, Fande ; Jin, Decheng ; Guo, Kai ; Larson, Steven L. ; Ballard, John H. ; Chen, Liangmei ; Arslan, Zikri ; Yuan, Guodong ; White, Jeremy R. ; Zhou, Lixiang ; Ma, Youhua ; Waggoner, Charles A. ; Han, Fengxiang X.</creator><creatorcontrib>Meng, Fande ; Jin, Decheng ; Guo, Kai ; Larson, Steven L. ; Ballard, John H. ; Chen, Liangmei ; Arslan, Zikri ; Yuan, Guodong ; White, Jeremy R. ; Zhou, Lixiang ; Ma, Youhua ; Waggoner, Charles A. ; Han, Fengxiang X.</creatorcontrib><description>Anthropogenic activities, such as ore mining and processing, nuclear power generation, and weapon tests, have generated uranium (U) contamination to soils and waters. The mobility and bioavailability of U are influenced by its sources, speciation, and plant species. Phytoremediation has emerged as an environmentally friendly, cost-effective green technology to remediate radioisotope- and metal-contaminated soils. The main objective of this study was to explore the feasibility using sunflower (
Helianthus annuus
) and Indian mustard (
Brassica juncea
) in cleaning up soils with UO
2
, UO
3
, and UO
2
(NO
3
)
2
. Uranium was found to be bioaccumulated in plant roots more than plant shoots. Uranium uptake by both plant species was significantly higher from the UO
3
- and uranyl-contaminated soils than from UO
2
-contaminated soils. UO
3
- and UO
2
(NO
3
)
2
-contaminated soils showed higher exchangeable, weak acid extractable, and labile U than the UO
2
-contaminated soils. After a growing season, three U forms decreased as redistribution/transformation of U resulted in U species with lower extractability. This study indicates the importance of U speciation in soil with regard to the potential use of sunflower and Indian mustard for phytoremediation of U-contaminated soils.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-018-4023-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anthropogenic factors ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bioaccumulation ; Bioavailability ; Bioremediation ; Brassica ; Brassica juncea ; Clean technology ; Cleaning ; Climate Change/Climate Change Impacts ; Contamination ; Earth and Environmental Science ; Environment ; Environmental monitoring ; Feasibility studies ; Flowers & plants ; Green technology ; Growing season ; Heavy metals ; Helianthus annuus ; Human influences ; Hydrogeology ; Mining industry ; Mustard ; Nuclear electric power generation ; Nuclear energy ; Nuclear weapons ; Phytoremediation ; Plant roots ; Plant species ; Radioisotopes ; Shoots ; Soil ; Soil contamination ; Soil remediation ; Soil Science & Conservation ; Speciation ; Species ; Uptake ; Uranium ; Uranium dioxide ; Water Quality/Water Pollution</subject><ispartof>Water, air, and soil pollution, 2018-11, Vol.229 (11), p.1-11, Article 369</ispartof><rights>Springer Nature Switzerland AG 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Water, Air, & Soil Pollution is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-da81fd239ab57f1da7d612d3c628f322d5d92d6ed745a2e974e0c4f264d4149d3</citedby><cites>FETCH-LOGICAL-c355t-da81fd239ab57f1da7d612d3c628f322d5d92d6ed745a2e974e0c4f264d4149d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-018-4023-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-018-4023-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Meng, Fande</creatorcontrib><creatorcontrib>Jin, Decheng</creatorcontrib><creatorcontrib>Guo, Kai</creatorcontrib><creatorcontrib>Larson, Steven L.</creatorcontrib><creatorcontrib>Ballard, John H.</creatorcontrib><creatorcontrib>Chen, Liangmei</creatorcontrib><creatorcontrib>Arslan, Zikri</creatorcontrib><creatorcontrib>Yuan, Guodong</creatorcontrib><creatorcontrib>White, Jeremy R.</creatorcontrib><creatorcontrib>Zhou, Lixiang</creatorcontrib><creatorcontrib>Ma, Youhua</creatorcontrib><creatorcontrib>Waggoner, Charles A.</creatorcontrib><creatorcontrib>Han, Fengxiang X.</creatorcontrib><title>Influences of U Sources and Forms on Its Bioaccumulation in Indian Mustard and Sunflower</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>Anthropogenic activities, such as ore mining and processing, nuclear power generation, and weapon tests, have generated uranium (U) contamination to soils and waters. The mobility and bioavailability of U are influenced by its sources, speciation, and plant species. Phytoremediation has emerged as an environmentally friendly, cost-effective green technology to remediate radioisotope- and metal-contaminated soils. The main objective of this study was to explore the feasibility using sunflower (
Helianthus annuus
) and Indian mustard (
Brassica juncea
) in cleaning up soils with UO
2
, UO
3
, and UO
2
(NO
3
)
2
. Uranium was found to be bioaccumulated in plant roots more than plant shoots. Uranium uptake by both plant species was significantly higher from the UO
3
- and uranyl-contaminated soils than from UO
2
-contaminated soils. UO
3
- and UO
2
(NO
3
)
2
-contaminated soils showed higher exchangeable, weak acid extractable, and labile U than the UO
2
-contaminated soils. After a growing season, three U forms decreased as redistribution/transformation of U resulted in U species with lower extractability. This study indicates the importance of U speciation in soil with regard to the potential use of sunflower and Indian mustard for phytoremediation of U-contaminated soils.</description><subject>Anthropogenic factors</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bioaccumulation</subject><subject>Bioavailability</subject><subject>Bioremediation</subject><subject>Brassica</subject><subject>Brassica juncea</subject><subject>Clean technology</subject><subject>Cleaning</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Contamination</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Feasibility studies</subject><subject>Flowers & plants</subject><subject>Green technology</subject><subject>Growing season</subject><subject>Heavy metals</subject><subject>Helianthus annuus</subject><subject>Human influences</subject><subject>Hydrogeology</subject><subject>Mining industry</subject><subject>Mustard</subject><subject>Nuclear electric power generation</subject><subject>Nuclear energy</subject><subject>Nuclear weapons</subject><subject>Phytoremediation</subject><subject>Plant roots</subject><subject>Plant species</subject><subject>Radioisotopes</subject><subject>Shoots</subject><subject>Soil</subject><subject>Soil contamination</subject><subject>Soil remediation</subject><subject>Soil Science & Conservation</subject><subject>Speciation</subject><subject>Species</subject><subject>Uptake</subject><subject>Uranium</subject><subject>Uranium dioxide</subject><subject>Water Quality/Water Pollution</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A66nJnWQyWdbio1BxUQvuQsyjTOkkNZlB_PemjuDKZBHu4Xz33hyErgmeEYz5bSIEOC4xaUqKoSr5CZoQxqsSRAWnaIIxFWUtuDhHFyntcD6i4RP0tvRuP1ivbSqCKzbFOgzxWChviocQuyz7Ytmn4q4NSuuhG_aqb7PWZtmbVvnieUi9iuYHWQ-5X_i08RKdObVP9ur3naLNw_3r4qlcvTwuF_NVqSvG-tKohjgDlVDvjDtiFDc1AVPpGhpXARhmBJjaGk6ZAis4tVhTBzU1lFBhqim6GfseYvgYbOrlLv_A55ESCNSYMy5Yds1G11btrWy9C31UOl9ju1YHb12b9TmrMdCaUMgAGQEdQ0rROnmIbafilyRYHhOXY-IyJy6PiUueGRiZlL1-a-PfKv9D33vXgn0</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Meng, Fande</creator><creator>Jin, Decheng</creator><creator>Guo, Kai</creator><creator>Larson, Steven L.</creator><creator>Ballard, John H.</creator><creator>Chen, Liangmei</creator><creator>Arslan, Zikri</creator><creator>Yuan, Guodong</creator><creator>White, Jeremy R.</creator><creator>Zhou, Lixiang</creator><creator>Ma, Youhua</creator><creator>Waggoner, Charles A.</creator><creator>Han, Fengxiang X.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20181101</creationdate><title>Influences of U Sources and Forms on Its Bioaccumulation in Indian Mustard and Sunflower</title><author>Meng, Fande ; Jin, Decheng ; Guo, Kai ; Larson, Steven L. ; Ballard, John H. ; Chen, Liangmei ; Arslan, Zikri ; Yuan, Guodong ; White, Jeremy R. ; Zhou, Lixiang ; Ma, Youhua ; Waggoner, Charles A. ; Han, Fengxiang X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-da81fd239ab57f1da7d612d3c628f322d5d92d6ed745a2e974e0c4f264d4149d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anthropogenic factors</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bioaccumulation</topic><topic>Bioavailability</topic><topic>Bioremediation</topic><topic>Brassica</topic><topic>Brassica juncea</topic><topic>Clean technology</topic><topic>Cleaning</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Contamination</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Feasibility studies</topic><topic>Flowers & plants</topic><topic>Green technology</topic><topic>Growing season</topic><topic>Heavy metals</topic><topic>Helianthus annuus</topic><topic>Human influences</topic><topic>Hydrogeology</topic><topic>Mining industry</topic><topic>Mustard</topic><topic>Nuclear electric power generation</topic><topic>Nuclear energy</topic><topic>Nuclear weapons</topic><topic>Phytoremediation</topic><topic>Plant roots</topic><topic>Plant species</topic><topic>Radioisotopes</topic><topic>Shoots</topic><topic>Soil</topic><topic>Soil contamination</topic><topic>Soil remediation</topic><topic>Soil Science & Conservation</topic><topic>Speciation</topic><topic>Species</topic><topic>Uptake</topic><topic>Uranium</topic><topic>Uranium dioxide</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fande</creatorcontrib><creatorcontrib>Jin, Decheng</creatorcontrib><creatorcontrib>Guo, Kai</creatorcontrib><creatorcontrib>Larson, Steven L.</creatorcontrib><creatorcontrib>Ballard, John H.</creatorcontrib><creatorcontrib>Chen, Liangmei</creatorcontrib><creatorcontrib>Arslan, Zikri</creatorcontrib><creatorcontrib>Yuan, Guodong</creatorcontrib><creatorcontrib>White, Jeremy R.</creatorcontrib><creatorcontrib>Zhou, Lixiang</creatorcontrib><creatorcontrib>Ma, Youhua</creatorcontrib><creatorcontrib>Waggoner, Charles A.</creatorcontrib><creatorcontrib>Han, Fengxiang X.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fande</au><au>Jin, Decheng</au><au>Guo, Kai</au><au>Larson, Steven L.</au><au>Ballard, John H.</au><au>Chen, Liangmei</au><au>Arslan, Zikri</au><au>Yuan, Guodong</au><au>White, Jeremy R.</au><au>Zhou, Lixiang</au><au>Ma, Youhua</au><au>Waggoner, Charles A.</au><au>Han, Fengxiang X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of U Sources and Forms on Its Bioaccumulation in Indian Mustard and Sunflower</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>229</volume><issue>11</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>369</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>Anthropogenic activities, such as ore mining and processing, nuclear power generation, and weapon tests, have generated uranium (U) contamination to soils and waters. The mobility and bioavailability of U are influenced by its sources, speciation, and plant species. Phytoremediation has emerged as an environmentally friendly, cost-effective green technology to remediate radioisotope- and metal-contaminated soils. The main objective of this study was to explore the feasibility using sunflower (
Helianthus annuus
) and Indian mustard (
Brassica juncea
) in cleaning up soils with UO
2
, UO
3
, and UO
2
(NO
3
)
2
. Uranium was found to be bioaccumulated in plant roots more than plant shoots. Uranium uptake by both plant species was significantly higher from the UO
3
- and uranyl-contaminated soils than from UO
2
-contaminated soils. UO
3
- and UO
2
(NO
3
)
2
-contaminated soils showed higher exchangeable, weak acid extractable, and labile U than the UO
2
-contaminated soils. After a growing season, three U forms decreased as redistribution/transformation of U resulted in U species with lower extractability. This study indicates the importance of U speciation in soil with regard to the potential use of sunflower and Indian mustard for phytoremediation of U-contaminated soils.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-018-4023-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-6979 |
ispartof | Water, air, and soil pollution, 2018-11, Vol.229 (11), p.1-11, Article 369 |
issn | 0049-6979 1573-2932 |
language | eng |
recordid | cdi_proquest_journals_2126075795 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anthropogenic factors Atmospheric Protection/Air Quality Control/Air Pollution Bioaccumulation Bioavailability Bioremediation Brassica Brassica juncea Clean technology Cleaning Climate Change/Climate Change Impacts Contamination Earth and Environmental Science Environment Environmental monitoring Feasibility studies Flowers & plants Green technology Growing season Heavy metals Helianthus annuus Human influences Hydrogeology Mining industry Mustard Nuclear electric power generation Nuclear energy Nuclear weapons Phytoremediation Plant roots Plant species Radioisotopes Shoots Soil Soil contamination Soil remediation Soil Science & Conservation Speciation Species Uptake Uranium Uranium dioxide Water Quality/Water Pollution |
title | Influences of U Sources and Forms on Its Bioaccumulation in Indian Mustard and Sunflower |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20U%20Sources%20and%20Forms%20on%20Its%20Bioaccumulation%20in%20Indian%20Mustard%20and%20Sunflower&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Meng,%20Fande&rft.date=2018-11-01&rft.volume=229&rft.issue=11&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=369&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-018-4023-7&rft_dat=%3Cgale_proqu%3EA560246142%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126075795&rft_id=info:pmid/&rft_galeid=A560246142&rfr_iscdi=true |