Construction of a Saccharum Consensus Genetic Map from Two Interspecific Crosses
A consensus map of homologous DNA linkage groups from two genotypes in each of two Saccharum species was aligned with the compact diploid genome of Sorghum bicolor (L.) Moench. A set of 439 DNA probes from different Poaceae (grasses) detected 2523 loci in two segregating populations derived from the...
Gespeichert in:
Veröffentlicht in: | Crop science 2002-03, Vol.42 (2), p.570-583 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 583 |
---|---|
container_issue | 2 |
container_start_page | 570 |
container_title | Crop science |
container_volume | 42 |
creator | Ming, Ray Liu, Sin‐Chieh Bowers, John E. Moore, Paul H. Irvine, James E. Paterson, Andrew H. |
description | A consensus map of homologous DNA linkage groups from two genotypes in each of two Saccharum species was aligned with the compact diploid genome of Sorghum bicolor (L.) Moench. A set of 439 DNA probes from different Poaceae (grasses) detected 2523 loci in two segregating populations derived from the crosses Saccharum officinarum L.'Green German' × S. spontaneum L. ‘IND 81‐146’, and S. spontaneum ‘PIN 84‐1’ × S. officinarum ‘Muntok Java’. Genetic maps of the four Saccharum genotypes, including a total of 289 linkage groups (LGs), were assembled into 13 homologous groups (HGs) on the basis of parallel arrangements of duplicated loci. The consensus map of HGs consisted of 232 probes and 982 mapped loci/alleles in four sugarcane linkage maps. Of the 982 loci/alleles on the consensus map, 845 (86%) of them correspond to a single linkage group of Sorghum, indicating the highly conserved genome structure between these two closely related genera. At least six basic chromosomes, LGs A, D, F, H, I, and J, showed close correspondence to each other in Saccharum and Sorghum Two possible chromosome fusion events were found in S. spontaneum corresponding to sorghum LG B fused with LG E, and LG B fused with LG G. This consensus map illustrates how the high‐density sorghum linkage map can be used to facilitate the mapping and understanding of the complex sugarcane genome. |
doi_str_mv | 10.2135/cropsci2002.5700 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_212590342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A84214202</galeid><sourcerecordid>A84214202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3460-35f8511fe4ba693554d517422f6e206847dbc596c8dc2dc9dbeba6c95507b7353</originalsourceid><addsrcrecordid>eNqFkU1rHDEMhk1oIds09x5NobdOKn_Nx3EZ2nQhJaGbQG_Gq7FTh117as8Q8u_r6QbaQ6DoIJAe6ZV4CXnH4IIzoT5himNGzwH4hWoATsiKSaEqqJV4RVYAjFWsFT9OyZucHwCg6Rq1Ijd9DHlKM04-BhodNXRrEH-aNB_o0rMhz5le2mAnj_SbGalL8UBvHyPdhMmmPFr0rrT6FHO2-S157cw-2_PnfEbuvny-7b9WV9eXm359VaGQNVRCuVYx5qzcmboTSslBsUZy7mrLoW5lM-xQdTW2A_IBu2FnC4idUtDsGqHEGXl_3Dum-Gu2edIPcU6hSGrOuOpASF6gj0fo3uyt9sHFKRm8L88ks4_BOl_K61ZyJjksePUCXmKwB48v8XDkcfk9WafH5A8mPWkGenFF_-OKXlwpIx-ezzYZzd4lE9Dnv3NCsVa1XeHWR-6xSD79d6_utz3vv1_fbPvNUvyj9RtWCaE1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212590342</pqid></control><display><type>article</type><title>Construction of a Saccharum Consensus Genetic Map from Two Interspecific Crosses</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Ming, Ray ; Liu, Sin‐Chieh ; Bowers, John E. ; Moore, Paul H. ; Irvine, James E. ; Paterson, Andrew H.</creator><creatorcontrib>Ming, Ray ; Liu, Sin‐Chieh ; Bowers, John E. ; Moore, Paul H. ; Irvine, James E. ; Paterson, Andrew H.</creatorcontrib><description>A consensus map of homologous DNA linkage groups from two genotypes in each of two Saccharum species was aligned with the compact diploid genome of Sorghum bicolor (L.) Moench. A set of 439 DNA probes from different Poaceae (grasses) detected 2523 loci in two segregating populations derived from the crosses Saccharum officinarum L.'Green German' × S. spontaneum L. ‘IND 81‐146’, and S. spontaneum ‘PIN 84‐1’ × S. officinarum ‘Muntok Java’. Genetic maps of the four Saccharum genotypes, including a total of 289 linkage groups (LGs), were assembled into 13 homologous groups (HGs) on the basis of parallel arrangements of duplicated loci. The consensus map of HGs consisted of 232 probes and 982 mapped loci/alleles in four sugarcane linkage maps. Of the 982 loci/alleles on the consensus map, 845 (86%) of them correspond to a single linkage group of Sorghum, indicating the highly conserved genome structure between these two closely related genera. At least six basic chromosomes, LGs A, D, F, H, I, and J, showed close correspondence to each other in Saccharum and Sorghum Two possible chromosome fusion events were found in S. spontaneum corresponding to sorghum LG B fused with LG E, and LG B fused with LG G. This consensus map illustrates how the high‐density sorghum linkage map can be used to facilitate the mapping and understanding of the complex sugarcane genome.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.2135/cropsci2002.5700</identifier><identifier>CODEN: CRPSAY</identifier><language>eng</language><publisher>Madison, WI: Crop Science Society of America</publisher><subject>Agricultural industry ; Agronomy. Soil science and plant productions ; Analysis ; Biological and medical sciences ; Classical and quantitative genetics. Population genetics. Molecular genetics ; Crops ; Deoxyribonucleic acid ; DNA ; Fundamental and applied biological sciences. Psychology ; Generalities. Genetics. Plant material ; Genes. Genome ; Genetic aspects ; Genetic research ; Genetics ; Genetics and breeding of economic plants ; Genotypes ; Molecular and cellular biology ; Molecular genetics ; Sugar industry ; Sugarcane</subject><ispartof>Crop science, 2002-03, Vol.42 (2), p.570-583</ispartof><rights>Published in Crop Sci.42:570–583.</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Crop Science Society of America</rights><rights>Copyright American Society of Agronomy Mar/Apr 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3460-35f8511fe4ba693554d517422f6e206847dbc596c8dc2dc9dbeba6c95507b7353</citedby><cites>FETCH-LOGICAL-c3460-35f8511fe4ba693554d517422f6e206847dbc596c8dc2dc9dbeba6c95507b7353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2135%2Fcropsci2002.5700$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2135%2Fcropsci2002.5700$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13518589$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Liu, Sin‐Chieh</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><creatorcontrib>Moore, Paul H.</creatorcontrib><creatorcontrib>Irvine, James E.</creatorcontrib><creatorcontrib>Paterson, Andrew H.</creatorcontrib><title>Construction of a Saccharum Consensus Genetic Map from Two Interspecific Crosses</title><title>Crop science</title><description>A consensus map of homologous DNA linkage groups from two genotypes in each of two Saccharum species was aligned with the compact diploid genome of Sorghum bicolor (L.) Moench. A set of 439 DNA probes from different Poaceae (grasses) detected 2523 loci in two segregating populations derived from the crosses Saccharum officinarum L.'Green German' × S. spontaneum L. ‘IND 81‐146’, and S. spontaneum ‘PIN 84‐1’ × S. officinarum ‘Muntok Java’. Genetic maps of the four Saccharum genotypes, including a total of 289 linkage groups (LGs), were assembled into 13 homologous groups (HGs) on the basis of parallel arrangements of duplicated loci. The consensus map of HGs consisted of 232 probes and 982 mapped loci/alleles in four sugarcane linkage maps. Of the 982 loci/alleles on the consensus map, 845 (86%) of them correspond to a single linkage group of Sorghum, indicating the highly conserved genome structure between these two closely related genera. At least six basic chromosomes, LGs A, D, F, H, I, and J, showed close correspondence to each other in Saccharum and Sorghum Two possible chromosome fusion events were found in S. spontaneum corresponding to sorghum LG B fused with LG E, and LG B fused with LG G. This consensus map illustrates how the high‐density sorghum linkage map can be used to facilitate the mapping and understanding of the complex sugarcane genome.</description><subject>Agricultural industry</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Analysis</subject><subject>Biological and medical sciences</subject><subject>Classical and quantitative genetics. Population genetics. Molecular genetics</subject><subject>Crops</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Genetics. Plant material</subject><subject>Genes. Genome</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genetics and breeding of economic plants</subject><subject>Genotypes</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Sugar industry</subject><subject>Sugarcane</subject><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1rHDEMhk1oIds09x5NobdOKn_Nx3EZ2nQhJaGbQG_Gq7FTh117as8Q8u_r6QbaQ6DoIJAe6ZV4CXnH4IIzoT5himNGzwH4hWoATsiKSaEqqJV4RVYAjFWsFT9OyZucHwCg6Rq1Ijd9DHlKM04-BhodNXRrEH-aNB_o0rMhz5le2mAnj_SbGalL8UBvHyPdhMmmPFr0rrT6FHO2-S157cw-2_PnfEbuvny-7b9WV9eXm359VaGQNVRCuVYx5qzcmboTSslBsUZy7mrLoW5lM-xQdTW2A_IBu2FnC4idUtDsGqHEGXl_3Dum-Gu2edIPcU6hSGrOuOpASF6gj0fo3uyt9sHFKRm8L88ks4_BOl_K61ZyJjksePUCXmKwB48v8XDkcfk9WafH5A8mPWkGenFF_-OKXlwpIx-ezzYZzd4lE9Dnv3NCsVa1XeHWR-6xSD79d6_utz3vv1_fbPvNUvyj9RtWCaE1</recordid><startdate>200203</startdate><enddate>200203</enddate><creator>Ming, Ray</creator><creator>Liu, Sin‐Chieh</creator><creator>Bowers, John E.</creator><creator>Moore, Paul H.</creator><creator>Irvine, James E.</creator><creator>Paterson, Andrew H.</creator><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>200203</creationdate><title>Construction of a Saccharum Consensus Genetic Map from Two Interspecific Crosses</title><author>Ming, Ray ; Liu, Sin‐Chieh ; Bowers, John E. ; Moore, Paul H. ; Irvine, James E. ; Paterson, Andrew H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3460-35f8511fe4ba693554d517422f6e206847dbc596c8dc2dc9dbeba6c95507b7353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Agricultural industry</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Analysis</topic><topic>Biological and medical sciences</topic><topic>Classical and quantitative genetics. Population genetics. Molecular genetics</topic><topic>Crops</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Genetics. Plant material</topic><topic>Genes. Genome</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genetics and breeding of economic plants</topic><topic>Genotypes</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Sugar industry</topic><topic>Sugarcane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Liu, Sin‐Chieh</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><creatorcontrib>Moore, Paul H.</creatorcontrib><creatorcontrib>Irvine, James E.</creatorcontrib><creatorcontrib>Paterson, Andrew H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Ray</au><au>Liu, Sin‐Chieh</au><au>Bowers, John E.</au><au>Moore, Paul H.</au><au>Irvine, James E.</au><au>Paterson, Andrew H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Saccharum Consensus Genetic Map from Two Interspecific Crosses</atitle><jtitle>Crop science</jtitle><date>2002-03</date><risdate>2002</risdate><volume>42</volume><issue>2</issue><spage>570</spage><epage>583</epage><pages>570-583</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><coden>CRPSAY</coden><abstract>A consensus map of homologous DNA linkage groups from two genotypes in each of two Saccharum species was aligned with the compact diploid genome of Sorghum bicolor (L.) Moench. A set of 439 DNA probes from different Poaceae (grasses) detected 2523 loci in two segregating populations derived from the crosses Saccharum officinarum L.'Green German' × S. spontaneum L. ‘IND 81‐146’, and S. spontaneum ‘PIN 84‐1’ × S. officinarum ‘Muntok Java’. Genetic maps of the four Saccharum genotypes, including a total of 289 linkage groups (LGs), were assembled into 13 homologous groups (HGs) on the basis of parallel arrangements of duplicated loci. The consensus map of HGs consisted of 232 probes and 982 mapped loci/alleles in four sugarcane linkage maps. Of the 982 loci/alleles on the consensus map, 845 (86%) of them correspond to a single linkage group of Sorghum, indicating the highly conserved genome structure between these two closely related genera. At least six basic chromosomes, LGs A, D, F, H, I, and J, showed close correspondence to each other in Saccharum and Sorghum Two possible chromosome fusion events were found in S. spontaneum corresponding to sorghum LG B fused with LG E, and LG B fused with LG G. This consensus map illustrates how the high‐density sorghum linkage map can be used to facilitate the mapping and understanding of the complex sugarcane genome.</abstract><cop>Madison, WI</cop><pub>Crop Science Society of America</pub><doi>10.2135/cropsci2002.5700</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-183X |
ispartof | Crop science, 2002-03, Vol.42 (2), p.570-583 |
issn | 0011-183X 1435-0653 |
language | eng |
recordid | cdi_proquest_journals_212590342 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Agricultural industry Agronomy. Soil science and plant productions Analysis Biological and medical sciences Classical and quantitative genetics. Population genetics. Molecular genetics Crops Deoxyribonucleic acid DNA Fundamental and applied biological sciences. Psychology Generalities. Genetics. Plant material Genes. Genome Genetic aspects Genetic research Genetics Genetics and breeding of economic plants Genotypes Molecular and cellular biology Molecular genetics Sugar industry Sugarcane |
title | Construction of a Saccharum Consensus Genetic Map from Two Interspecific Crosses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Saccharum%20Consensus%20Genetic%20Map%20from%20Two%20Interspecific%20Crosses&rft.jtitle=Crop%20science&rft.au=Ming,%20Ray&rft.date=2002-03&rft.volume=42&rft.issue=2&rft.spage=570&rft.epage=583&rft.pages=570-583&rft.issn=0011-183X&rft.eissn=1435-0653&rft.coden=CRPSAY&rft_id=info:doi/10.2135/cropsci2002.5700&rft_dat=%3Cgale_proqu%3EA84214202%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212590342&rft_id=info:pmid/&rft_galeid=A84214202&rfr_iscdi=true |