Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation
We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the redu...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-03, Vol.95 (12), p.125124, Article 125124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 125124 |
container_title | Physical review. B |
container_volume | 95 |
creator | McCaul, G. M. G. Lorenz, C. D. Kantorovich, L. |
description | We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville–von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed. |
doi_str_mv | 10.1103/PhysRevB.95.125124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2125763550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125763550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-8564ccbf3b0dbfb5a2f43ef8f858ef4544053b66d5dccb7793651af18c0843293</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWGpfwFXA9dT8z8RdLf5BwSK6HjJpwqR0kmmSKfbtnVJ19d3F4V6-A8AtRnOMEb1ft8f0YQ6Pc8nnmHBM2AWYECZkIaWQl_-Zo2swS2mLEMICyRLJCejXKmaXXfCFjcZA1fcxKN3CHGDojYf7Qfk8dDAdUzZdgs7DVsUueKeh8QcXg--Mz-kBLjw030pnmHLQrUp5JFYuDAe32xloxqLTzA24smqXzOz3TsHX89Pn8rVYvb-8LRerQlPCclFxwbRuLG3QprENV8QyamxlK14ZyzhjiNNGiA3fjFhZSio4VhZXGlWMEkmn4O7cO_6zH0zK9TYM0Y-TNRkllYJyjkaKnCkdQ0rR2LqPrlPxWGNUn-TWf3JryeuzXPoDDd1xQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125763550</pqid></control><display><type>article</type><title>Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation</title><source>American Physical Society Journals</source><creator>McCaul, G. M. G. ; Lorenz, C. D. ; Kantorovich, L.</creator><creatorcontrib>McCaul, G. M. G. ; Lorenz, C. D. ; Kantorovich, L.</creatorcontrib><description>We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville–von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.95.125124</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Density ; Differential equations ; Evolution ; Initial conditions ; Liouville equations ; Open systems ; Partitions</subject><ispartof>Physical review. B, 2017-03, Vol.95 (12), p.125124, Article 125124</ispartof><rights>Copyright American Physical Society Mar 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-8564ccbf3b0dbfb5a2f43ef8f858ef4544053b66d5dccb7793651af18c0843293</citedby><cites>FETCH-LOGICAL-c324t-8564ccbf3b0dbfb5a2f43ef8f858ef4544053b66d5dccb7793651af18c0843293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>McCaul, G. M. G.</creatorcontrib><creatorcontrib>Lorenz, C. D.</creatorcontrib><creatorcontrib>Kantorovich, L.</creatorcontrib><title>Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation</title><title>Physical review. B</title><description>We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville–von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.</description><subject>Density</subject><subject>Differential equations</subject><subject>Evolution</subject><subject>Initial conditions</subject><subject>Liouville equations</subject><subject>Open systems</subject><subject>Partitions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEYRYMoWGpfwFXA9dT8z8RdLf5BwSK6HjJpwqR0kmmSKfbtnVJ19d3F4V6-A8AtRnOMEb1ft8f0YQ6Pc8nnmHBM2AWYECZkIaWQl_-Zo2swS2mLEMICyRLJCejXKmaXXfCFjcZA1fcxKN3CHGDojYf7Qfk8dDAdUzZdgs7DVsUueKeh8QcXg--Mz-kBLjw030pnmHLQrUp5JFYuDAe32xloxqLTzA24smqXzOz3TsHX89Pn8rVYvb-8LRerQlPCclFxwbRuLG3QprENV8QyamxlK14ZyzhjiNNGiA3fjFhZSio4VhZXGlWMEkmn4O7cO_6zH0zK9TYM0Y-TNRkllYJyjkaKnCkdQ0rR2LqPrlPxWGNUn-TWf3JryeuzXPoDDd1xQw</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>McCaul, G. M. G.</creator><creator>Lorenz, C. D.</creator><creator>Kantorovich, L.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170321</creationdate><title>Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation</title><author>McCaul, G. M. G. ; Lorenz, C. D. ; Kantorovich, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-8564ccbf3b0dbfb5a2f43ef8f858ef4544053b66d5dccb7793651af18c0843293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Density</topic><topic>Differential equations</topic><topic>Evolution</topic><topic>Initial conditions</topic><topic>Liouville equations</topic><topic>Open systems</topic><topic>Partitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCaul, G. M. G.</creatorcontrib><creatorcontrib>Lorenz, C. D.</creatorcontrib><creatorcontrib>Kantorovich, L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCaul, G. M. G.</au><au>Lorenz, C. D.</au><au>Kantorovich, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation</atitle><jtitle>Physical review. B</jtitle><date>2017-03-21</date><risdate>2017</risdate><volume>95</volume><issue>12</issue><spage>125124</spage><pages>125124-</pages><artnum>125124</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville–von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.95.125124</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2017-03, Vol.95 (12), p.125124, Article 125124 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2125763550 |
source | American Physical Society Journals |
subjects | Density Differential equations Evolution Initial conditions Liouville equations Open systems Partitions |
title | Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partition-free%20approach%20to%20open%20quantum%20systems%20in%20harmonic%20environments:%20An%20exact%20stochastic%20Liouville%20equation&rft.jtitle=Physical%20review.%20B&rft.au=McCaul,%20G.%20M.%20G.&rft.date=2017-03-21&rft.volume=95&rft.issue=12&rft.spage=125124&rft.pages=125124-&rft.artnum=125124&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.95.125124&rft_dat=%3Cproquest_cross%3E2125763550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125763550&rft_id=info:pmid/&rfr_iscdi=true |