Fracture in annealed and severely deformed tungsten

Bulk tungsten normally undergoes brittle fracture at ambient temperatures and has a brittle-to-ductile transition in the range 200–300 °C. This limits the use of tungsten for a host of applications. In general, the fracture mode of tungsten at ambient temperature is intergranular whereas at high tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-09, Vol.734, p.244-254
Hauptverfasser: Levin, Zachary S., Srivastava, Ankit, Foley, David C., Hartwig, Karl T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue
container_start_page 244
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 734
creator Levin, Zachary S.
Srivastava, Ankit
Foley, David C.
Hartwig, Karl T.
description Bulk tungsten normally undergoes brittle fracture at ambient temperatures and has a brittle-to-ductile transition in the range 200–300 °C. This limits the use of tungsten for a host of applications. In general, the fracture mode of tungsten at ambient temperature is intergranular whereas at high temperatures it undergoes transgranular fracture. In this work the focus is on the influences of microstructure and temperature on three-point bend fracture of polycrystalline pure tungsten. The samples were processed by equal channel angular extrusion (ECAE) through a 90° die angle via route A in order to produce an elongated microstructure. The mechanical behavior of both unprocessed and processed materials was then characterized by three-point bending at temperatures ranging from −45 °C to 425 °C. The results show that a single ECAE extrusion (strain ~ 1.15) reduces the flexural toughness of the material and increases the brittle-to-ductile transition temperature, while two and four extrusions dramatically increase the flexural toughness with little effect on the transition temperature compared to that of the unprocessed material. The flexural toughness of the material subjected to four extrusions (strains exceeding 4.5) is more than 50 times greater than that of the unprocessed material at ambient temperature. This is mainly due to microstructural changes that increase the resistance to intergranular fracture, enhance plastic dissipation, and activate relatively high fracture toughness crack systems for transgranular fracture. The results show that substantial elongation of grains by deformation processing at a temperature near the brittle-to-ductile transition temperature is an effective method for improving the ambient temperature ductility and toughness of bulk polycrystalline tungsten.
doi_str_mv 10.1016/j.msea.2018.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2125722791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318306440</els_id><sourcerecordid>2125722791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8006f2364b369c6ba0b3d25302c152d32875da6792adc182c79bf1ec959ef9dd3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC59bJpEka8CKLq8KCFz2HNJlKy267Ju3Cvr1d1rOnGYb_mxk-xu45FBy4euyKXSJXIPCqAFkAlBdswSst8tIIdckWYJDnEoy4ZjcpdQDAS5ALJtbR-XGKlLV95vqe3JbC3IQs0YEibY9ZoGaIu3k6Tv13Gqm_ZVeN2ya6-6tL9rV--Vy95ZuP1_fV8yb3QuOYVwCqQaHKWijjVe2gFgGlAPRcYhBYaRmc0gZd8LxCr03dcPJGGmpMCGLJHs5793H4mSiNthum2M8nLXKUGlEbPqfwnPJxSClSY_ex3bl4tBzsSY7t7EmOPcmxIO0sZ4aezhDN_x9aijb5lnpPoY3kRxuG9j_8F3OJbDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125722791</pqid></control><display><type>article</type><title>Fracture in annealed and severely deformed tungsten</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Levin, Zachary S. ; Srivastava, Ankit ; Foley, David C. ; Hartwig, Karl T.</creator><creatorcontrib>Levin, Zachary S. ; Srivastava, Ankit ; Foley, David C. ; Hartwig, Karl T.</creatorcontrib><description>Bulk tungsten normally undergoes brittle fracture at ambient temperatures and has a brittle-to-ductile transition in the range 200–300 °C. This limits the use of tungsten for a host of applications. In general, the fracture mode of tungsten at ambient temperature is intergranular whereas at high temperatures it undergoes transgranular fracture. In this work the focus is on the influences of microstructure and temperature on three-point bend fracture of polycrystalline pure tungsten. The samples were processed by equal channel angular extrusion (ECAE) through a 90° die angle via route A in order to produce an elongated microstructure. The mechanical behavior of both unprocessed and processed materials was then characterized by three-point bending at temperatures ranging from −45 °C to 425 °C. The results show that a single ECAE extrusion (strain ~ 1.15) reduces the flexural toughness of the material and increases the brittle-to-ductile transition temperature, while two and four extrusions dramatically increase the flexural toughness with little effect on the transition temperature compared to that of the unprocessed material. The flexural toughness of the material subjected to four extrusions (strains exceeding 4.5) is more than 50 times greater than that of the unprocessed material at ambient temperature. This is mainly due to microstructural changes that increase the resistance to intergranular fracture, enhance plastic dissipation, and activate relatively high fracture toughness crack systems for transgranular fracture. The results show that substantial elongation of grains by deformation processing at a temperature near the brittle-to-ductile transition temperature is an effective method for improving the ambient temperature ductility and toughness of bulk polycrystalline tungsten.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.05.004</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Ambient temperature ; Brittle-to-ductile transition ; Deformation ; Ductile fracture ; Ductile-brittle transition ; ECAP ; Elongation ; Equal channel angular extrusion ; Extrusion ; Extrusion dies ; Failure analysis ; Fracture ; Fracture mechanics ; Fracture toughness ; Fractures ; Hardness testing ; Intergranular fracture ; Mechanical properties ; Microstructure ; Polycrystals ; Transgranular fracture ; Transition temperature ; Tungsten</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2018-09, Vol.734, p.244-254</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Sep 12, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8006f2364b369c6ba0b3d25302c152d32875da6792adc182c79bf1ec959ef9dd3</citedby><cites>FETCH-LOGICAL-c372t-8006f2364b369c6ba0b3d25302c152d32875da6792adc182c79bf1ec959ef9dd3</cites><orcidid>0000-0002-4632-7995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2018.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Levin, Zachary S.</creatorcontrib><creatorcontrib>Srivastava, Ankit</creatorcontrib><creatorcontrib>Foley, David C.</creatorcontrib><creatorcontrib>Hartwig, Karl T.</creatorcontrib><title>Fracture in annealed and severely deformed tungsten</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Bulk tungsten normally undergoes brittle fracture at ambient temperatures and has a brittle-to-ductile transition in the range 200–300 °C. This limits the use of tungsten for a host of applications. In general, the fracture mode of tungsten at ambient temperature is intergranular whereas at high temperatures it undergoes transgranular fracture. In this work the focus is on the influences of microstructure and temperature on three-point bend fracture of polycrystalline pure tungsten. The samples were processed by equal channel angular extrusion (ECAE) through a 90° die angle via route A in order to produce an elongated microstructure. The mechanical behavior of both unprocessed and processed materials was then characterized by three-point bending at temperatures ranging from −45 °C to 425 °C. The results show that a single ECAE extrusion (strain ~ 1.15) reduces the flexural toughness of the material and increases the brittle-to-ductile transition temperature, while two and four extrusions dramatically increase the flexural toughness with little effect on the transition temperature compared to that of the unprocessed material. The flexural toughness of the material subjected to four extrusions (strains exceeding 4.5) is more than 50 times greater than that of the unprocessed material at ambient temperature. This is mainly due to microstructural changes that increase the resistance to intergranular fracture, enhance plastic dissipation, and activate relatively high fracture toughness crack systems for transgranular fracture. The results show that substantial elongation of grains by deformation processing at a temperature near the brittle-to-ductile transition temperature is an effective method for improving the ambient temperature ductility and toughness of bulk polycrystalline tungsten.</description><subject>Ambient temperature</subject><subject>Brittle-to-ductile transition</subject><subject>Deformation</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>ECAP</subject><subject>Elongation</subject><subject>Equal channel angular extrusion</subject><subject>Extrusion</subject><subject>Extrusion dies</subject><subject>Failure analysis</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Hardness testing</subject><subject>Intergranular fracture</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Polycrystals</subject><subject>Transgranular fracture</subject><subject>Transition temperature</subject><subject>Tungsten</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeC59bJpEka8CKLq8KCFz2HNJlKy267Ju3Cvr1d1rOnGYb_mxk-xu45FBy4euyKXSJXIPCqAFkAlBdswSst8tIIdckWYJDnEoy4ZjcpdQDAS5ALJtbR-XGKlLV95vqe3JbC3IQs0YEibY9ZoGaIu3k6Tv13Gqm_ZVeN2ya6-6tL9rV--Vy95ZuP1_fV8yb3QuOYVwCqQaHKWijjVe2gFgGlAPRcYhBYaRmc0gZd8LxCr03dcPJGGmpMCGLJHs5793H4mSiNthum2M8nLXKUGlEbPqfwnPJxSClSY_ex3bl4tBzsSY7t7EmOPcmxIO0sZ4aezhDN_x9aijb5lnpPoY3kRxuG9j_8F3OJbDM</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>Levin, Zachary S.</creator><creator>Srivastava, Ankit</creator><creator>Foley, David C.</creator><creator>Hartwig, Karl T.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4632-7995</orcidid></search><sort><creationdate>20180912</creationdate><title>Fracture in annealed and severely deformed tungsten</title><author>Levin, Zachary S. ; Srivastava, Ankit ; Foley, David C. ; Hartwig, Karl T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8006f2364b369c6ba0b3d25302c152d32875da6792adc182c79bf1ec959ef9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambient temperature</topic><topic>Brittle-to-ductile transition</topic><topic>Deformation</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>ECAP</topic><topic>Elongation</topic><topic>Equal channel angular extrusion</topic><topic>Extrusion</topic><topic>Extrusion dies</topic><topic>Failure analysis</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Hardness testing</topic><topic>Intergranular fracture</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Polycrystals</topic><topic>Transgranular fracture</topic><topic>Transition temperature</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levin, Zachary S.</creatorcontrib><creatorcontrib>Srivastava, Ankit</creatorcontrib><creatorcontrib>Foley, David C.</creatorcontrib><creatorcontrib>Hartwig, Karl T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levin, Zachary S.</au><au>Srivastava, Ankit</au><au>Foley, David C.</au><au>Hartwig, Karl T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture in annealed and severely deformed tungsten</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-09-12</date><risdate>2018</risdate><volume>734</volume><spage>244</spage><epage>254</epage><pages>244-254</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Bulk tungsten normally undergoes brittle fracture at ambient temperatures and has a brittle-to-ductile transition in the range 200–300 °C. This limits the use of tungsten for a host of applications. In general, the fracture mode of tungsten at ambient temperature is intergranular whereas at high temperatures it undergoes transgranular fracture. In this work the focus is on the influences of microstructure and temperature on three-point bend fracture of polycrystalline pure tungsten. The samples were processed by equal channel angular extrusion (ECAE) through a 90° die angle via route A in order to produce an elongated microstructure. The mechanical behavior of both unprocessed and processed materials was then characterized by three-point bending at temperatures ranging from −45 °C to 425 °C. The results show that a single ECAE extrusion (strain ~ 1.15) reduces the flexural toughness of the material and increases the brittle-to-ductile transition temperature, while two and four extrusions dramatically increase the flexural toughness with little effect on the transition temperature compared to that of the unprocessed material. The flexural toughness of the material subjected to four extrusions (strains exceeding 4.5) is more than 50 times greater than that of the unprocessed material at ambient temperature. This is mainly due to microstructural changes that increase the resistance to intergranular fracture, enhance plastic dissipation, and activate relatively high fracture toughness crack systems for transgranular fracture. The results show that substantial elongation of grains by deformation processing at a temperature near the brittle-to-ductile transition temperature is an effective method for improving the ambient temperature ductility and toughness of bulk polycrystalline tungsten.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.05.004</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4632-7995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-09, Vol.734, p.244-254
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2125722791
source Elsevier ScienceDirect Journals Complete
subjects Ambient temperature
Brittle-to-ductile transition
Deformation
Ductile fracture
Ductile-brittle transition
ECAP
Elongation
Equal channel angular extrusion
Extrusion
Extrusion dies
Failure analysis
Fracture
Fracture mechanics
Fracture toughness
Fractures
Hardness testing
Intergranular fracture
Mechanical properties
Microstructure
Polycrystals
Transgranular fracture
Transition temperature
Tungsten
title Fracture in annealed and severely deformed tungsten
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20in%20annealed%20and%20severely%20deformed%20tungsten&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Levin,%20Zachary%20S.&rft.date=2018-09-12&rft.volume=734&rft.spage=244&rft.epage=254&rft.pages=244-254&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.05.004&rft_dat=%3Cproquest_cross%3E2125722791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125722791&rft_id=info:pmid/&rft_els_id=S0921509318306440&rfr_iscdi=true