MGP: Un algorithme de planification temps réel prenant en compte l'évolution dynamique du but
Devising intelligent robots or agents that interact with humans is a major challenge for artificial intelligence. In such contexts, agents must constantly adapt their decisions according to human activities and modify their goals. In this paper, we tackle this problem by introducing a novel planning...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pellier, Damien Vanneufville, Mickaël Fiorino, Humbert Métivier, Marc Bouzy, Bruno |
description | Devising intelligent robots or agents that interact with humans is a major challenge for artificial intelligence. In such contexts, agents must constantly adapt their decisions according to human activities and modify their goals. In this paper, we tackle this problem by introducing a novel planning approach, called Moving Goal Planning (MGP), to adapt plans to goal evolutions. This planning algorithm draws inspiration from Moving Target Search (MTS) algorithms. In order to limit the number of search iterations and to improve its efficiency, MGP delays as much as possible triggering new searches when the goal changes over time. To this purpose, MGP uses two strategies: Open Check (OC) that checks if the new goal is still in the current search tree and Plan Follow (PF) that estimates whether executing actions of the current plan brings MGP closer to the new goal. Moreover, MGP uses a parsimonious strategy to update incrementally the search tree at each new search that reduces the number of calls to the heuristic function and speeds up the search. Finally, we show evaluation results that demonstrate the effectiveness of our approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2125496874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125496874</sourcerecordid><originalsourceid>FETCH-proquest_journals_21254968743</originalsourceid><addsrcrecordid>eNqNzEsKwjAUheEgCBbtHi44cFRo06dOxcdEcKDjEttUU9Ik5iG4pK6jG7OIC3B0Bv_HmSAPx3EUFAnGM-Qb04ZhiLMcp2nsofJ0OG_gKoDwu9TMPjoKNQXFiWANq4hlUoClnTKgh55yUJoKIixQAZXslKXAV0P_ktx9af0WpGNPN744uDm7QNOGcEP9387Rcr-7bI-B0nJUxpatdFqMqcQRTpN1VuRJ_J_6ABfaRbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125496874</pqid></control><display><type>article</type><title>MGP: Un algorithme de planification temps réel prenant en compte l'évolution dynamique du but</title><source>Free E- Journals</source><creator>Pellier, Damien ; Vanneufville, Mickaël ; Fiorino, Humbert ; Métivier, Marc ; Bouzy, Bruno</creator><creatorcontrib>Pellier, Damien ; Vanneufville, Mickaël ; Fiorino, Humbert ; Métivier, Marc ; Bouzy, Bruno</creatorcontrib><description>Devising intelligent robots or agents that interact with humans is a major challenge for artificial intelligence. In such contexts, agents must constantly adapt their decisions according to human activities and modify their goals. In this paper, we tackle this problem by introducing a novel planning approach, called Moving Goal Planning (MGP), to adapt plans to goal evolutions. This planning algorithm draws inspiration from Moving Target Search (MTS) algorithms. In order to limit the number of search iterations and to improve its efficiency, MGP delays as much as possible triggering new searches when the goal changes over time. To this purpose, MGP uses two strategies: Open Check (OC) that checks if the new goal is still in the current search tree and Plan Follow (PF) that estimates whether executing actions of the current plan brings MGP closer to the new goal. Moreover, MGP uses a parsimonious strategy to update incrementally the search tree at each new search that reduces the number of calls to the heuristic function and speeds up the search. Finally, we show evaluation results that demonstrate the effectiveness of our approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agents (artificial intelligence) ; Algorithms ; Artificial intelligence ; Planning ; Searching</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pellier, Damien</creatorcontrib><creatorcontrib>Vanneufville, Mickaël</creatorcontrib><creatorcontrib>Fiorino, Humbert</creatorcontrib><creatorcontrib>Métivier, Marc</creatorcontrib><creatorcontrib>Bouzy, Bruno</creatorcontrib><title>MGP: Un algorithme de planification temps réel prenant en compte l'évolution dynamique du but</title><title>arXiv.org</title><description>Devising intelligent robots or agents that interact with humans is a major challenge for artificial intelligence. In such contexts, agents must constantly adapt their decisions according to human activities and modify their goals. In this paper, we tackle this problem by introducing a novel planning approach, called Moving Goal Planning (MGP), to adapt plans to goal evolutions. This planning algorithm draws inspiration from Moving Target Search (MTS) algorithms. In order to limit the number of search iterations and to improve its efficiency, MGP delays as much as possible triggering new searches when the goal changes over time. To this purpose, MGP uses two strategies: Open Check (OC) that checks if the new goal is still in the current search tree and Plan Follow (PF) that estimates whether executing actions of the current plan brings MGP closer to the new goal. Moreover, MGP uses a parsimonious strategy to update incrementally the search tree at each new search that reduces the number of calls to the heuristic function and speeds up the search. Finally, we show evaluation results that demonstrate the effectiveness of our approach.</description><subject>Agents (artificial intelligence)</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Planning</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzEsKwjAUheEgCBbtHi44cFRo06dOxcdEcKDjEttUU9Ik5iG4pK6jG7OIC3B0Bv_HmSAPx3EUFAnGM-Qb04ZhiLMcp2nsofJ0OG_gKoDwu9TMPjoKNQXFiWANq4hlUoClnTKgh55yUJoKIixQAZXslKXAV0P_ktx9af0WpGNPN744uDm7QNOGcEP9387Rcr-7bI-B0nJUxpatdFqMqcQRTpN1VuRJ_J_6ABfaRbY</recordid><startdate>20181022</startdate><enddate>20181022</enddate><creator>Pellier, Damien</creator><creator>Vanneufville, Mickaël</creator><creator>Fiorino, Humbert</creator><creator>Métivier, Marc</creator><creator>Bouzy, Bruno</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181022</creationdate><title>MGP: Un algorithme de planification temps réel prenant en compte l'évolution dynamique du but</title><author>Pellier, Damien ; Vanneufville, Mickaël ; Fiorino, Humbert ; Métivier, Marc ; Bouzy, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21254968743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agents (artificial intelligence)</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Planning</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Pellier, Damien</creatorcontrib><creatorcontrib>Vanneufville, Mickaël</creatorcontrib><creatorcontrib>Fiorino, Humbert</creatorcontrib><creatorcontrib>Métivier, Marc</creatorcontrib><creatorcontrib>Bouzy, Bruno</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pellier, Damien</au><au>Vanneufville, Mickaël</au><au>Fiorino, Humbert</au><au>Métivier, Marc</au><au>Bouzy, Bruno</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MGP: Un algorithme de planification temps réel prenant en compte l'évolution dynamique du but</atitle><jtitle>arXiv.org</jtitle><date>2018-10-22</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Devising intelligent robots or agents that interact with humans is a major challenge for artificial intelligence. In such contexts, agents must constantly adapt their decisions according to human activities and modify their goals. In this paper, we tackle this problem by introducing a novel planning approach, called Moving Goal Planning (MGP), to adapt plans to goal evolutions. This planning algorithm draws inspiration from Moving Target Search (MTS) algorithms. In order to limit the number of search iterations and to improve its efficiency, MGP delays as much as possible triggering new searches when the goal changes over time. To this purpose, MGP uses two strategies: Open Check (OC) that checks if the new goal is still in the current search tree and Plan Follow (PF) that estimates whether executing actions of the current plan brings MGP closer to the new goal. Moreover, MGP uses a parsimonious strategy to update incrementally the search tree at each new search that reduces the number of calls to the heuristic function and speeds up the search. Finally, we show evaluation results that demonstrate the effectiveness of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2125496874 |
source | Free E- Journals |
subjects | Agents (artificial intelligence) Algorithms Artificial intelligence Planning Searching |
title | MGP: Un algorithme de planification temps réel prenant en compte l'évolution dynamique du but |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MGP:%20Un%20algorithme%20de%20planification%20temps%20r%C3%A9el%20prenant%20en%20compte%20l'%C3%A9volution%20dynamique%20du%20but&rft.jtitle=arXiv.org&rft.au=Pellier,%20Damien&rft.date=2018-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2125496874%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125496874&rft_id=info:pmid/&rfr_iscdi=true |