Risk Assessment of the Drinking Water Samples in the Rural Area from MG, Brazil
Water bodies are subject to contamination, whether diffuse or punctual, of natural or anthropogenic origin. Degradation of water resources can adversely affect human health, the development of industrial and agricultural activities, and thus generate significant impacts in the social, economic and e...
Gespeichert in:
Veröffentlicht in: | International Journal of Environmental Research 2018-12, Vol.12 (6), p.965-971 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 971 |
---|---|
container_issue | 6 |
container_start_page | 965 |
container_title | International Journal of Environmental Research |
container_volume | 12 |
creator | Santos, Mayra S. Metzker, Maria C. R. M. Rodrigues, Guilherme L. Corrêa, Luis R. S. Silva, Mayne L. V. Barbosa, Ana L. G. Faria, Márcia C. S. Rodrigues, Jairo L. |
description | Water bodies are subject to contamination, whether diffuse or punctual, of natural or anthropogenic origin. Degradation of water resources can adversely affect human health, the development of industrial and agricultural activities, and thus generate significant impacts in the social, economic and environmental spheres. Despite the recognized importance of water resources, it has been significantly contaminated by toxic metals from industrial, agricultural, mining or even lithogenic processes. This study aimed to evaluate water quality through physical–chemical, microbiological and metal analysis parameters. The physical–chemical parameters analyzed were: pH, turbidity and temperature. Microbiological analysis was performed by determining the presence of total and thermotolerant coliforms through multiple tube methods and the most probable number. The metals were identified and quantified by inductively coupled plasma mass spectrometry. Among the 36 analyzed points, the following results were observed: 11 points presented the pH value below the acceptable limit; 21 points presented alteration in relation to turbidity; 16 points presented positive values for thermotolerant coliforms. Among the 24 metals analyzed, only 4 presented alterations when compared to the limits required by the legislation; they are mercury, aluminum, manganese and iron. Arsenic, although it has values within the parameters, has high toxicity and, for this reason, the value of the risk quotient was also analyzed. It was verified that in 15 points, of the 36 analyzed, there is a potential risk to non-carcinogenic human health; however, the population of this region is at risk of exposure to the toxic metals effects. |
doi_str_mv | 10.1007/s41742-018-0136-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2125333514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706629762</galeid><sourcerecordid>A706629762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-c53c964b425fc4cf9186df66a124539d0a857590aa909289d190dfb45588e8893</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKo_wFvAq1vzvclxrVqFSqEqHkO6m9S0-1GT7UF_vakreDJDGJh5n5nhBeACowlGKL-ODOeMZAjL9KnI-BEYEYRkRihix2CEc8ozIQU_BecxblB6VCnBxAgslj5uYRGjjbGxbQ87B_t3C2-Db7e-XcM309sAn02zq22Evv3pLvfB1LAI1kAXugY-za7gTTBfvj4DJ87U0Z7_5jF4vb97mT5k88XscVrMs5Jy3mclp2U6YMUIdyUrncJSVE4IgwnjVFXISJ5zhYxRSBGpKqxQ5VaMcymtlIqOweUwdxe6j72Nvd50-9CmlZpgwimlHLOkmgyqtamt9q3r-mDKFJVtfNm11vlUL3IkBFG5IAnAA1CGLsZgnd4F35jwqTHSB6_14LVOXuuD15onhgxMTNp2bcPfKf9D3zpdfeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125333514</pqid></control><display><type>article</type><title>Risk Assessment of the Drinking Water Samples in the Rural Area from MG, Brazil</title><source>SpringerNature Journals</source><source>Bioline International</source><creator>Santos, Mayra S. ; Metzker, Maria C. R. M. ; Rodrigues, Guilherme L. ; Corrêa, Luis R. S. ; Silva, Mayne L. V. ; Barbosa, Ana L. G. ; Faria, Márcia C. S. ; Rodrigues, Jairo L.</creator><creatorcontrib>Santos, Mayra S. ; Metzker, Maria C. R. M. ; Rodrigues, Guilherme L. ; Corrêa, Luis R. S. ; Silva, Mayne L. V. ; Barbosa, Ana L. G. ; Faria, Márcia C. S. ; Rodrigues, Jairo L.</creatorcontrib><description>Water bodies are subject to contamination, whether diffuse or punctual, of natural or anthropogenic origin. Degradation of water resources can adversely affect human health, the development of industrial and agricultural activities, and thus generate significant impacts in the social, economic and environmental spheres. Despite the recognized importance of water resources, it has been significantly contaminated by toxic metals from industrial, agricultural, mining or even lithogenic processes. This study aimed to evaluate water quality through physical–chemical, microbiological and metal analysis parameters. The physical–chemical parameters analyzed were: pH, turbidity and temperature. Microbiological analysis was performed by determining the presence of total and thermotolerant coliforms through multiple tube methods and the most probable number. The metals were identified and quantified by inductively coupled plasma mass spectrometry. Among the 36 analyzed points, the following results were observed: 11 points presented the pH value below the acceptable limit; 21 points presented alteration in relation to turbidity; 16 points presented positive values for thermotolerant coliforms. Among the 24 metals analyzed, only 4 presented alterations when compared to the limits required by the legislation; they are mercury, aluminum, manganese and iron. Arsenic, although it has values within the parameters, has high toxicity and, for this reason, the value of the risk quotient was also analyzed. It was verified that in 15 points, of the 36 analyzed, there is a potential risk to non-carcinogenic human health; however, the population of this region is at risk of exposure to the toxic metals effects.</description><identifier>ISSN: 1735-6865</identifier><identifier>EISSN: 2008-2304</identifier><identifier>DOI: 10.1007/s41742-018-0136-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agricultural development ; Agricultural economics ; Agronomy ; Aluminum ; Anthropogenic factors ; Aquatic resources ; Arsenic ; Biodegradation ; Brazil ; Carcinogens ; Coliforms ; Contamination ; Drinking water ; Earth and Environmental Science ; Environment ; Environmental Engineering/Biotechnology ; Environmental impact ; Environmental Management ; Geoecology/Natural Processes ; Health risks ; Heavy metals ; Human influences ; Identification methods ; Inductively coupled plasma mass spectrometry ; Industrial pollution ; Iron ; Landscape/Regional and Urban Planning ; Legislation ; Manganese ; Mass spectrometry ; Mass spectroscopy ; Mercury ; Mercury (metal) ; Metals ; Microbiological analysis ; Mineral industry ; Mining ; Mining industry ; Most probable number ; Natural Hazards ; Organic chemistry ; Parameters ; pH effects ; Risk analysis ; Risk assessment ; Rural areas ; Technical Note ; Thermal pollution ; Toxicity ; Turbidity ; Water analysis ; Water pollution ; Water quality ; Water resources ; Water sampling</subject><ispartof>International Journal of Environmental Research, 2018-12, Vol.12 (6), p.965-971</ispartof><rights>University of Tehran 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-c53c964b425fc4cf9186df66a124539d0a857590aa909289d190dfb45588e8893</citedby><cites>FETCH-LOGICAL-c355t-c53c964b425fc4cf9186df66a124539d0a857590aa909289d190dfb45588e8893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41742-018-0136-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s41742-018-0136-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Santos, Mayra S.</creatorcontrib><creatorcontrib>Metzker, Maria C. R. M.</creatorcontrib><creatorcontrib>Rodrigues, Guilherme L.</creatorcontrib><creatorcontrib>Corrêa, Luis R. S.</creatorcontrib><creatorcontrib>Silva, Mayne L. V.</creatorcontrib><creatorcontrib>Barbosa, Ana L. G.</creatorcontrib><creatorcontrib>Faria, Márcia C. S.</creatorcontrib><creatorcontrib>Rodrigues, Jairo L.</creatorcontrib><title>Risk Assessment of the Drinking Water Samples in the Rural Area from MG, Brazil</title><title>International Journal of Environmental Research</title><addtitle>Int J Environ Res</addtitle><description>Water bodies are subject to contamination, whether diffuse or punctual, of natural or anthropogenic origin. Degradation of water resources can adversely affect human health, the development of industrial and agricultural activities, and thus generate significant impacts in the social, economic and environmental spheres. Despite the recognized importance of water resources, it has been significantly contaminated by toxic metals from industrial, agricultural, mining or even lithogenic processes. This study aimed to evaluate water quality through physical–chemical, microbiological and metal analysis parameters. The physical–chemical parameters analyzed were: pH, turbidity and temperature. Microbiological analysis was performed by determining the presence of total and thermotolerant coliforms through multiple tube methods and the most probable number. The metals were identified and quantified by inductively coupled plasma mass spectrometry. Among the 36 analyzed points, the following results were observed: 11 points presented the pH value below the acceptable limit; 21 points presented alteration in relation to turbidity; 16 points presented positive values for thermotolerant coliforms. Among the 24 metals analyzed, only 4 presented alterations when compared to the limits required by the legislation; they are mercury, aluminum, manganese and iron. Arsenic, although it has values within the parameters, has high toxicity and, for this reason, the value of the risk quotient was also analyzed. It was verified that in 15 points, of the 36 analyzed, there is a potential risk to non-carcinogenic human health; however, the population of this region is at risk of exposure to the toxic metals effects.</description><subject>Agricultural development</subject><subject>Agricultural economics</subject><subject>Agronomy</subject><subject>Aluminum</subject><subject>Anthropogenic factors</subject><subject>Aquatic resources</subject><subject>Arsenic</subject><subject>Biodegradation</subject><subject>Brazil</subject><subject>Carcinogens</subject><subject>Coliforms</subject><subject>Contamination</subject><subject>Drinking water</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Environmental impact</subject><subject>Environmental Management</subject><subject>Geoecology/Natural Processes</subject><subject>Health risks</subject><subject>Heavy metals</subject><subject>Human influences</subject><subject>Identification methods</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Industrial pollution</subject><subject>Iron</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Legislation</subject><subject>Manganese</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Metals</subject><subject>Microbiological analysis</subject><subject>Mineral industry</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Most probable number</subject><subject>Natural Hazards</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>pH effects</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Rural areas</subject><subject>Technical Note</subject><subject>Thermal pollution</subject><subject>Toxicity</subject><subject>Turbidity</subject><subject>Water analysis</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>Water resources</subject><subject>Water sampling</subject><issn>1735-6865</issn><issn>2008-2304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKo_wFvAq1vzvclxrVqFSqEqHkO6m9S0-1GT7UF_vakreDJDGJh5n5nhBeACowlGKL-ODOeMZAjL9KnI-BEYEYRkRihix2CEc8ozIQU_BecxblB6VCnBxAgslj5uYRGjjbGxbQ87B_t3C2-Db7e-XcM309sAn02zq22Evv3pLvfB1LAI1kAXugY-za7gTTBfvj4DJ87U0Z7_5jF4vb97mT5k88XscVrMs5Jy3mclp2U6YMUIdyUrncJSVE4IgwnjVFXISJ5zhYxRSBGpKqxQ5VaMcymtlIqOweUwdxe6j72Nvd50-9CmlZpgwimlHLOkmgyqtamt9q3r-mDKFJVtfNm11vlUL3IkBFG5IAnAA1CGLsZgnd4F35jwqTHSB6_14LVOXuuD15onhgxMTNp2bcPfKf9D3zpdfeo</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Santos, Mayra S.</creator><creator>Metzker, Maria C. R. M.</creator><creator>Rodrigues, Guilherme L.</creator><creator>Corrêa, Luis R. S.</creator><creator>Silva, Mayne L. V.</creator><creator>Barbosa, Ana L. G.</creator><creator>Faria, Márcia C. S.</creator><creator>Rodrigues, Jairo L.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20181201</creationdate><title>Risk Assessment of the Drinking Water Samples in the Rural Area from MG, Brazil</title><author>Santos, Mayra S. ; Metzker, Maria C. R. M. ; Rodrigues, Guilherme L. ; Corrêa, Luis R. S. ; Silva, Mayne L. V. ; Barbosa, Ana L. G. ; Faria, Márcia C. S. ; Rodrigues, Jairo L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-c53c964b425fc4cf9186df66a124539d0a857590aa909289d190dfb45588e8893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural development</topic><topic>Agricultural economics</topic><topic>Agronomy</topic><topic>Aluminum</topic><topic>Anthropogenic factors</topic><topic>Aquatic resources</topic><topic>Arsenic</topic><topic>Biodegradation</topic><topic>Brazil</topic><topic>Carcinogens</topic><topic>Coliforms</topic><topic>Contamination</topic><topic>Drinking water</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Environmental impact</topic><topic>Environmental Management</topic><topic>Geoecology/Natural Processes</topic><topic>Health risks</topic><topic>Heavy metals</topic><topic>Human influences</topic><topic>Identification methods</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Industrial pollution</topic><topic>Iron</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Legislation</topic><topic>Manganese</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Metals</topic><topic>Microbiological analysis</topic><topic>Mineral industry</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Most probable number</topic><topic>Natural Hazards</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>pH effects</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Rural areas</topic><topic>Technical Note</topic><topic>Thermal pollution</topic><topic>Toxicity</topic><topic>Turbidity</topic><topic>Water analysis</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>Water resources</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Mayra S.</creatorcontrib><creatorcontrib>Metzker, Maria C. R. M.</creatorcontrib><creatorcontrib>Rodrigues, Guilherme L.</creatorcontrib><creatorcontrib>Corrêa, Luis R. S.</creatorcontrib><creatorcontrib>Silva, Mayne L. V.</creatorcontrib><creatorcontrib>Barbosa, Ana L. G.</creatorcontrib><creatorcontrib>Faria, Márcia C. S.</creatorcontrib><creatorcontrib>Rodrigues, Jairo L.</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>International Journal of Environmental Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Mayra S.</au><au>Metzker, Maria C. R. M.</au><au>Rodrigues, Guilherme L.</au><au>Corrêa, Luis R. S.</au><au>Silva, Mayne L. V.</au><au>Barbosa, Ana L. G.</au><au>Faria, Márcia C. S.</au><au>Rodrigues, Jairo L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk Assessment of the Drinking Water Samples in the Rural Area from MG, Brazil</atitle><jtitle>International Journal of Environmental Research</jtitle><stitle>Int J Environ Res</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>12</volume><issue>6</issue><spage>965</spage><epage>971</epage><pages>965-971</pages><issn>1735-6865</issn><eissn>2008-2304</eissn><abstract>Water bodies are subject to contamination, whether diffuse or punctual, of natural or anthropogenic origin. Degradation of water resources can adversely affect human health, the development of industrial and agricultural activities, and thus generate significant impacts in the social, economic and environmental spheres. Despite the recognized importance of water resources, it has been significantly contaminated by toxic metals from industrial, agricultural, mining or even lithogenic processes. This study aimed to evaluate water quality through physical–chemical, microbiological and metal analysis parameters. The physical–chemical parameters analyzed were: pH, turbidity and temperature. Microbiological analysis was performed by determining the presence of total and thermotolerant coliforms through multiple tube methods and the most probable number. The metals were identified and quantified by inductively coupled plasma mass spectrometry. Among the 36 analyzed points, the following results were observed: 11 points presented the pH value below the acceptable limit; 21 points presented alteration in relation to turbidity; 16 points presented positive values for thermotolerant coliforms. Among the 24 metals analyzed, only 4 presented alterations when compared to the limits required by the legislation; they are mercury, aluminum, manganese and iron. Arsenic, although it has values within the parameters, has high toxicity and, for this reason, the value of the risk quotient was also analyzed. It was verified that in 15 points, of the 36 analyzed, there is a potential risk to non-carcinogenic human health; however, the population of this region is at risk of exposure to the toxic metals effects.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s41742-018-0136-5</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-6865 |
ispartof | International Journal of Environmental Research, 2018-12, Vol.12 (6), p.965-971 |
issn | 1735-6865 2008-2304 |
language | eng |
recordid | cdi_proquest_journals_2125333514 |
source | SpringerNature Journals; Bioline International |
subjects | Agricultural development Agricultural economics Agronomy Aluminum Anthropogenic factors Aquatic resources Arsenic Biodegradation Brazil Carcinogens Coliforms Contamination Drinking water Earth and Environmental Science Environment Environmental Engineering/Biotechnology Environmental impact Environmental Management Geoecology/Natural Processes Health risks Heavy metals Human influences Identification methods Inductively coupled plasma mass spectrometry Industrial pollution Iron Landscape/Regional and Urban Planning Legislation Manganese Mass spectrometry Mass spectroscopy Mercury Mercury (metal) Metals Microbiological analysis Mineral industry Mining Mining industry Most probable number Natural Hazards Organic chemistry Parameters pH effects Risk analysis Risk assessment Rural areas Technical Note Thermal pollution Toxicity Turbidity Water analysis Water pollution Water quality Water resources Water sampling |
title | Risk Assessment of the Drinking Water Samples in the Rural Area from MG, Brazil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20Assessment%20of%20the%20Drinking%20Water%20Samples%20in%20the%20Rural%20Area%20from%20MG,%20Brazil&rft.jtitle=International%20Journal%20of%20Environmental%20Research&rft.au=Santos,%20Mayra%20S.&rft.date=2018-12-01&rft.volume=12&rft.issue=6&rft.spage=965&rft.epage=971&rft.pages=965-971&rft.issn=1735-6865&rft.eissn=2008-2304&rft_id=info:doi/10.1007/s41742-018-0136-5&rft_dat=%3Cgale_proqu%3EA706629762%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125333514&rft_id=info:pmid/&rft_galeid=A706629762&rfr_iscdi=true |