Generating exact solutions to Einstein’s equation using linearized approximations
We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2016-10, Vol.94 (8), Article 084009 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. D |
container_volume | 94 |
creator | Harte, Abraham I. Vines, Justin |
description | We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations. |
doi_str_mv | 10.1103/PhysRevD.94.084009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2125317799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125317799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-19852ad3d3b21b328954bef88c7a4fe52e74487e98f044cc5d743799196521843</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWGpfwFXA9dT8NslSaq1CQfFnHdKZO5pSM22SkdaVr-Hr-SROrbq6B87HOZeD0CklQ0oJP7972aZ7eLscGjEkWhBiDlCPCUUKQpg5_NeUHKNBSgvSyRExitIeephCgOiyD88YNq7MODXLNvsmJJwbPPEhZfDh6-MzYVi3bufgNu3wpQ_gon-HCrvVKjYb__pjpxN0VLtlgsHv7aOnq8nj-LqY3U5vxhezomRK5oIaLZmreMXnjM4500aKOdRal8qJGiQDJYRWYHRNhChLWSnBlTHUjCSjWvA-OtvnduXrFlK2i6aNoau0jDLJqerojmJ7qoxNShFqu4rdp3FrKbG7_ezfftYIu9-PfwMob2ZF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125317799</pqid></control><display><type>article</type><title>Generating exact solutions to Einstein’s equation using linearized approximations</title><source>American Physical Society Journals</source><creator>Harte, Abraham I. ; Vines, Justin</creator><creatorcontrib>Harte, Abraham I. ; Vines, Justin</creatorcontrib><description>We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.94.084009</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Eigenvalues ; Eigenvectors ; Einstein equations ; Linearization ; Mathematical analysis ; Plane waves ; Tensors</subject><ispartof>Physical review. D, 2016-10, Vol.94 (8), Article 084009</ispartof><rights>Copyright American Physical Society Oct 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-19852ad3d3b21b328954bef88c7a4fe52e74487e98f044cc5d743799196521843</citedby><cites>FETCH-LOGICAL-c275t-19852ad3d3b21b328954bef88c7a4fe52e74487e98f044cc5d743799196521843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Harte, Abraham I.</creatorcontrib><creatorcontrib>Vines, Justin</creatorcontrib><title>Generating exact solutions to Einstein’s equation using linearized approximations</title><title>Physical review. D</title><description>We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.</description><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Einstein equations</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Plane waves</subject><subject>Tensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWGpfwFXA9dT8NslSaq1CQfFnHdKZO5pSM22SkdaVr-Hr-SROrbq6B87HOZeD0CklQ0oJP7972aZ7eLscGjEkWhBiDlCPCUUKQpg5_NeUHKNBSgvSyRExitIeephCgOiyD88YNq7MODXLNvsmJJwbPPEhZfDh6-MzYVi3bufgNu3wpQ_gon-HCrvVKjYb__pjpxN0VLtlgsHv7aOnq8nj-LqY3U5vxhezomRK5oIaLZmreMXnjM4500aKOdRal8qJGiQDJYRWYHRNhChLWSnBlTHUjCSjWvA-OtvnduXrFlK2i6aNoau0jDLJqerojmJ7qoxNShFqu4rdp3FrKbG7_ezfftYIu9-PfwMob2ZF</recordid><startdate>20161006</startdate><enddate>20161006</enddate><creator>Harte, Abraham I.</creator><creator>Vines, Justin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161006</creationdate><title>Generating exact solutions to Einstein’s equation using linearized approximations</title><author>Harte, Abraham I. ; Vines, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-19852ad3d3b21b328954bef88c7a4fe52e74487e98f044cc5d743799196521843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Einstein equations</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Plane waves</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harte, Abraham I.</creatorcontrib><creatorcontrib>Vines, Justin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harte, Abraham I.</au><au>Vines, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating exact solutions to Einstein’s equation using linearized approximations</atitle><jtitle>Physical review. D</jtitle><date>2016-10-06</date><risdate>2016</risdate><volume>94</volume><issue>8</issue><artnum>084009</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.94.084009</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2016-10, Vol.94 (8), Article 084009 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2125317799 |
source | American Physical Society Journals |
subjects | Eigenvalues Eigenvectors Einstein equations Linearization Mathematical analysis Plane waves Tensors |
title | Generating exact solutions to Einstein’s equation using linearized approximations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20exact%20solutions%20to%20Einstein%E2%80%99s%20equation%20using%20linearized%20approximations&rft.jtitle=Physical%20review.%20D&rft.au=Harte,%20Abraham%20I.&rft.date=2016-10-06&rft.volume=94&rft.issue=8&rft.artnum=084009&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.94.084009&rft_dat=%3Cproquest_cross%3E2125317799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125317799&rft_id=info:pmid/&rfr_iscdi=true |