Generating exact solutions to Einstein’s equation using linearized approximations

We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-10, Vol.94 (8), Article 084009
Hauptverfasser: Harte, Abraham I., Vines, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 94
creator Harte, Abraham I.
Vines, Justin
description We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.
doi_str_mv 10.1103/PhysRevD.94.084009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2125317799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125317799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-19852ad3d3b21b328954bef88c7a4fe52e74487e98f044cc5d743799196521843</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWGpfwFXA9dT8NslSaq1CQfFnHdKZO5pSM22SkdaVr-Hr-SROrbq6B87HOZeD0CklQ0oJP7972aZ7eLscGjEkWhBiDlCPCUUKQpg5_NeUHKNBSgvSyRExitIeephCgOiyD88YNq7MODXLNvsmJJwbPPEhZfDh6-MzYVi3bufgNu3wpQ_gon-HCrvVKjYb__pjpxN0VLtlgsHv7aOnq8nj-LqY3U5vxhezomRK5oIaLZmreMXnjM4500aKOdRal8qJGiQDJYRWYHRNhChLWSnBlTHUjCSjWvA-OtvnduXrFlK2i6aNoau0jDLJqerojmJ7qoxNShFqu4rdp3FrKbG7_ezfftYIu9-PfwMob2ZF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125317799</pqid></control><display><type>article</type><title>Generating exact solutions to Einstein’s equation using linearized approximations</title><source>American Physical Society Journals</source><creator>Harte, Abraham I. ; Vines, Justin</creator><creatorcontrib>Harte, Abraham I. ; Vines, Justin</creatorcontrib><description>We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.94.084009</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Eigenvalues ; Eigenvectors ; Einstein equations ; Linearization ; Mathematical analysis ; Plane waves ; Tensors</subject><ispartof>Physical review. D, 2016-10, Vol.94 (8), Article 084009</ispartof><rights>Copyright American Physical Society Oct 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-19852ad3d3b21b328954bef88c7a4fe52e74487e98f044cc5d743799196521843</citedby><cites>FETCH-LOGICAL-c275t-19852ad3d3b21b328954bef88c7a4fe52e74487e98f044cc5d743799196521843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Harte, Abraham I.</creatorcontrib><creatorcontrib>Vines, Justin</creatorcontrib><title>Generating exact solutions to Einstein’s equation using linearized approximations</title><title>Physical review. D</title><description>We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.</description><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Einstein equations</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Plane waves</subject><subject>Tensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWGpfwFXA9dT8NslSaq1CQfFnHdKZO5pSM22SkdaVr-Hr-SROrbq6B87HOZeD0CklQ0oJP7972aZ7eLscGjEkWhBiDlCPCUUKQpg5_NeUHKNBSgvSyRExitIeephCgOiyD88YNq7MODXLNvsmJJwbPPEhZfDh6-MzYVi3bufgNu3wpQ_gon-HCrvVKjYb__pjpxN0VLtlgsHv7aOnq8nj-LqY3U5vxhezomRK5oIaLZmreMXnjM4500aKOdRal8qJGiQDJYRWYHRNhChLWSnBlTHUjCSjWvA-OtvnduXrFlK2i6aNoau0jDLJqerojmJ7qoxNShFqu4rdp3FrKbG7_ezfftYIu9-PfwMob2ZF</recordid><startdate>20161006</startdate><enddate>20161006</enddate><creator>Harte, Abraham I.</creator><creator>Vines, Justin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161006</creationdate><title>Generating exact solutions to Einstein’s equation using linearized approximations</title><author>Harte, Abraham I. ; Vines, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-19852ad3d3b21b328954bef88c7a4fe52e74487e98f044cc5d743799196521843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Einstein equations</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Plane waves</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harte, Abraham I.</creatorcontrib><creatorcontrib>Vines, Justin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harte, Abraham I.</au><au>Vines, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating exact solutions to Einstein’s equation using linearized approximations</atitle><jtitle>Physical review. D</jtitle><date>2016-10-06</date><risdate>2016</risdate><volume>94</volume><issue>8</issue><artnum>084009</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We show that certain solutions to the linearized Einstein equation can-by the application of a particular type of linearized gauge transformation-be straightforwardly transformed into solutions of the exact Einstein equation. In cases with nontrivial matter content, the exact stress-energy tensor of the transformed metric has the same eigenvalues and eigenvectors as the linearized stress-energy tensor of the initial approximation. When our gauge exists, the tensorial structure of transformed metric perturbations identically eliminates all nonlinearities in Einstein’s equation. As examples, we derive the exact Kerr and gravitational plane wave metrics from standard harmonic-gauge approximations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.94.084009</doi></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2016-10, Vol.94 (8), Article 084009
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2125317799
source American Physical Society Journals
subjects Eigenvalues
Eigenvectors
Einstein equations
Linearization
Mathematical analysis
Plane waves
Tensors
title Generating exact solutions to Einstein’s equation using linearized approximations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20exact%20solutions%20to%20Einstein%E2%80%99s%20equation%20using%20linearized%20approximations&rft.jtitle=Physical%20review.%20D&rft.au=Harte,%20Abraham%20I.&rft.date=2016-10-06&rft.volume=94&rft.issue=8&rft.artnum=084009&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.94.084009&rft_dat=%3Cproquest_cross%3E2125317799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125317799&rft_id=info:pmid/&rfr_iscdi=true