Black hole squeezers

We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs “squeeze” the initial state of the scalar field (even for the vacuum) and produce scalar particles....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2017-09, Vol.96 (6), Article 065017
Hauptverfasser: Su, Daiqin, Ho, C. T. Marco, Mann, Robert B., Ralph, Timothy C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review. D
container_volume 96
creator Su, Daiqin
Ho, C. T. Marco
Mann, Robert B.
Ralph, Timothy C.
description We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs “squeeze” the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.
doi_str_mv 10.1103/PhysRevD.96.065017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2125312879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125312879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-98e091254f073a6229993c74cf8a5a29cc682e0f3eaf56ba67b23360a68481393</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWNrePHkqeN51ZrKbZI5arRYKiug5pCGh1tWtSSvUX--WVU_vHR7fg0-Ic4QSEeTl42qfn8LXTcmqBFUD6iMxoEpDAUB8_N8RTsU45zV0VQFrxIE4u26cf5us2iZM8ucuhO-Q8kicRNfkMP7NoXiZ3T5P74vFw918erUoPOl6W7AJwEh1FUFLp4iYWXpd-Whc7Yi9V4YCRBlcrNXSKb0kKRU4ZSqDkuVQXPTcTWq777y163aXPrpLSx1XIhl9WFG_8qnNOYVoN-n13aW9RbAHAfZPgGVlewHyB9vpTH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125312879</pqid></control><display><type>article</type><title>Black hole squeezers</title><source>American Physical Society Journals</source><creator>Su, Daiqin ; Ho, C. T. Marco ; Mann, Robert B. ; Ralph, Timothy C.</creator><creatorcontrib>Su, Daiqin ; Ho, C. T. Marco ; Mann, Robert B. ; Ralph, Timothy C.</creatorcontrib><description>We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs “squeeze” the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.96.065017</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Gravitation ; Hawking radiation ; Particle decay</subject><ispartof>Physical review. D, 2017-09, Vol.96 (6), Article 065017</ispartof><rights>Copyright American Physical Society Sep 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-98e091254f073a6229993c74cf8a5a29cc682e0f3eaf56ba67b23360a68481393</citedby><cites>FETCH-LOGICAL-c275t-98e091254f073a6229993c74cf8a5a29cc682e0f3eaf56ba67b23360a68481393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids></links><search><creatorcontrib>Su, Daiqin</creatorcontrib><creatorcontrib>Ho, C. T. Marco</creatorcontrib><creatorcontrib>Mann, Robert B.</creatorcontrib><creatorcontrib>Ralph, Timothy C.</creatorcontrib><title>Black hole squeezers</title><title>Physical review. D</title><description>We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs “squeeze” the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.</description><subject>Black holes</subject><subject>Gravitation</subject><subject>Hawking radiation</subject><subject>Particle decay</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWNrePHkqeN51ZrKbZI5arRYKiug5pCGh1tWtSSvUX--WVU_vHR7fg0-Ic4QSEeTl42qfn8LXTcmqBFUD6iMxoEpDAUB8_N8RTsU45zV0VQFrxIE4u26cf5us2iZM8ucuhO-Q8kicRNfkMP7NoXiZ3T5P74vFw918erUoPOl6W7AJwEh1FUFLp4iYWXpd-Whc7Yi9V4YCRBlcrNXSKb0kKRU4ZSqDkuVQXPTcTWq777y163aXPrpLSx1XIhl9WFG_8qnNOYVoN-n13aW9RbAHAfZPgGVlewHyB9vpTH0</recordid><startdate>20170925</startdate><enddate>20170925</enddate><creator>Su, Daiqin</creator><creator>Ho, C. T. Marco</creator><creator>Mann, Robert B.</creator><creator>Ralph, Timothy C.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170925</creationdate><title>Black hole squeezers</title><author>Su, Daiqin ; Ho, C. T. Marco ; Mann, Robert B. ; Ralph, Timothy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-98e091254f073a6229993c74cf8a5a29cc682e0f3eaf56ba67b23360a68481393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Black holes</topic><topic>Gravitation</topic><topic>Hawking radiation</topic><topic>Particle decay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Daiqin</creatorcontrib><creatorcontrib>Ho, C. T. Marco</creatorcontrib><creatorcontrib>Mann, Robert B.</creatorcontrib><creatorcontrib>Ralph, Timothy C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Daiqin</au><au>Ho, C. T. Marco</au><au>Mann, Robert B.</au><au>Ralph, Timothy C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black hole squeezers</atitle><jtitle>Physical review. D</jtitle><date>2017-09-25</date><risdate>2017</risdate><volume>96</volume><issue>6</issue><artnum>065017</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs “squeeze” the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.96.065017</doi></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2017-09, Vol.96 (6), Article 065017
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2125312879
source American Physical Society Journals
subjects Black holes
Gravitation
Hawking radiation
Particle decay
title Black hole squeezers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20hole%20squeezers&rft.jtitle=Physical%20review.%20D&rft.au=Su,%20Daiqin&rft.date=2017-09-25&rft.volume=96&rft.issue=6&rft.artnum=065017&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.96.065017&rft_dat=%3Cproquest_cross%3E2125312879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125312879&rft_id=info:pmid/&rfr_iscdi=true