The problem of two fixed centers: bifurcation diagram for positive energies

We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2015-01, Vol.56 (1), p.1
1. Verfasser: Seri, Marcello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Journal of mathematical physics
container_volume 56
creator Seri, Marcello
description We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.
doi_str_mv 10.1063/1.4906068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124947824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-5c3d93f1e2cbe0b5700efe70b02efca82d9b04d8c7e97d6b4771b3b45f9ccb7c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EEqUw8A8sMTGkvHYcf7Chii9RiaXMUey8Lq7auNgJH_-eoHZGN9zy6O50hFwymDGQ5Q2bCQMSpD4iEwbaFEpW-phMADgvuND6lJzlvAZgTAsxIS_Ld6S7FO0GtzR62n9F6sM3ttRh12PKt9QGPyTX9CF2tA3NKjVb6mOiu5hDHz6RYodpFTCfkxPfbDJeHHxK3h7ul_OnYvH6-Dy_WxSO66ovKle2pvQMubMItlIA6FGBBY7eNZq3xoJotVNoVCutUIrZ0orKG-escuWUXO1zx90fA-a-XschdWNlzRkXRijNxX8UkxWrJB81Utd7yqWYc0Jf71LYNumnZlD_PVqz-vBo-QvgH2ez</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651562626</pqid></control><display><type>article</type><title>The problem of two fixed centers: bifurcation diagram for positive energies</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Seri, Marcello</creator><creatorcontrib>Seri, Marcello</creatorcontrib><description>We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4906068</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Bifurcations ; Energy ; Eulers equations ; Mathematical problems ; Momentum ; Physics</subject><ispartof>Journal of mathematical physics, 2015-01, Vol.56 (1), p.1</ispartof><rights>Copyright American Institute of Physics Jan 2015</rights><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-5c3d93f1e2cbe0b5700efe70b02efca82d9b04d8c7e97d6b4771b3b45f9ccb7c3</citedby><cites>FETCH-LOGICAL-c285t-5c3d93f1e2cbe0b5700efe70b02efca82d9b04d8c7e97d6b4771b3b45f9ccb7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Seri, Marcello</creatorcontrib><title>The problem of two fixed centers: bifurcation diagram for positive energies</title><title>Journal of mathematical physics</title><description>We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.</description><subject>Bifurcations</subject><subject>Energy</subject><subject>Eulers equations</subject><subject>Mathematical problems</subject><subject>Momentum</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAYhC0EEqUw8A8sMTGkvHYcf7Chii9RiaXMUey8Lq7auNgJH_-eoHZGN9zy6O50hFwymDGQ5Q2bCQMSpD4iEwbaFEpW-phMADgvuND6lJzlvAZgTAsxIS_Ld6S7FO0GtzR62n9F6sM3ttRh12PKt9QGPyTX9CF2tA3NKjVb6mOiu5hDHz6RYodpFTCfkxPfbDJeHHxK3h7ul_OnYvH6-Dy_WxSO66ovKle2pvQMubMItlIA6FGBBY7eNZq3xoJotVNoVCutUIrZ0orKG-escuWUXO1zx90fA-a-XschdWNlzRkXRijNxX8UkxWrJB81Utd7yqWYc0Jf71LYNumnZlD_PVqz-vBo-QvgH2ez</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Seri, Marcello</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>The problem of two fixed centers: bifurcation diagram for positive energies</title><author>Seri, Marcello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-5c3d93f1e2cbe0b5700efe70b02efca82d9b04d8c7e97d6b4771b3b45f9ccb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bifurcations</topic><topic>Energy</topic><topic>Eulers equations</topic><topic>Mathematical problems</topic><topic>Momentum</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seri, Marcello</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seri, Marcello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The problem of two fixed centers: bifurcation diagram for positive energies</atitle><jtitle>Journal of mathematical physics</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>56</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906068</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2015-01, Vol.56 (1), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2124947824
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bifurcations
Energy
Eulers equations
Mathematical problems
Momentum
Physics
title The problem of two fixed centers: bifurcation diagram for positive energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20problem%20of%20two%20fixed%20centers:%20bifurcation%20diagram%20for%20positive%20energies&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Seri,%20Marcello&rft.date=2015-01-01&rft.volume=56&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4906068&rft_dat=%3Cproquest_cross%3E2124947824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651562626&rft_id=info:pmid/&rfr_iscdi=true