The problem of two fixed centers: bifurcation diagram for positive energies
We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-mo...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2015-01, Vol.56 (1), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 56 |
creator | Seri, Marcello |
description | We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map. |
doi_str_mv | 10.1063/1.4906068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124947824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-5c3d93f1e2cbe0b5700efe70b02efca82d9b04d8c7e97d6b4771b3b45f9ccb7c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EEqUw8A8sMTGkvHYcf7Chii9RiaXMUey8Lq7auNgJH_-eoHZGN9zy6O50hFwymDGQ5Q2bCQMSpD4iEwbaFEpW-phMADgvuND6lJzlvAZgTAsxIS_Ld6S7FO0GtzR62n9F6sM3ttRh12PKt9QGPyTX9CF2tA3NKjVb6mOiu5hDHz6RYodpFTCfkxPfbDJeHHxK3h7ul_OnYvH6-Dy_WxSO66ovKle2pvQMubMItlIA6FGBBY7eNZq3xoJotVNoVCutUIrZ0orKG-escuWUXO1zx90fA-a-XschdWNlzRkXRijNxX8UkxWrJB81Utd7yqWYc0Jf71LYNumnZlD_PVqz-vBo-QvgH2ez</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651562626</pqid></control><display><type>article</type><title>The problem of two fixed centers: bifurcation diagram for positive energies</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Seri, Marcello</creator><creatorcontrib>Seri, Marcello</creatorcontrib><description>We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4906068</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Bifurcations ; Energy ; Eulers equations ; Mathematical problems ; Momentum ; Physics</subject><ispartof>Journal of mathematical physics, 2015-01, Vol.56 (1), p.1</ispartof><rights>Copyright American Institute of Physics Jan 2015</rights><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-5c3d93f1e2cbe0b5700efe70b02efca82d9b04d8c7e97d6b4771b3b45f9ccb7c3</citedby><cites>FETCH-LOGICAL-c285t-5c3d93f1e2cbe0b5700efe70b02efca82d9b04d8c7e97d6b4771b3b45f9ccb7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Seri, Marcello</creatorcontrib><title>The problem of two fixed centers: bifurcation diagram for positive energies</title><title>Journal of mathematical physics</title><description>We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.</description><subject>Bifurcations</subject><subject>Energy</subject><subject>Eulers equations</subject><subject>Mathematical problems</subject><subject>Momentum</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAYhC0EEqUw8A8sMTGkvHYcf7Chii9RiaXMUey8Lq7auNgJH_-eoHZGN9zy6O50hFwymDGQ5Q2bCQMSpD4iEwbaFEpW-phMADgvuND6lJzlvAZgTAsxIS_Ld6S7FO0GtzR62n9F6sM3ttRh12PKt9QGPyTX9CF2tA3NKjVb6mOiu5hDHz6RYodpFTCfkxPfbDJeHHxK3h7ul_OnYvH6-Dy_WxSO66ovKle2pvQMubMItlIA6FGBBY7eNZq3xoJotVNoVCutUIrZ0orKG-escuWUXO1zx90fA-a-XschdWNlzRkXRijNxX8UkxWrJB81Utd7yqWYc0Jf71LYNumnZlD_PVqz-vBo-QvgH2ez</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Seri, Marcello</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>The problem of two fixed centers: bifurcation diagram for positive energies</title><author>Seri, Marcello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-5c3d93f1e2cbe0b5700efe70b02efca82d9b04d8c7e97d6b4771b3b45f9ccb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bifurcations</topic><topic>Energy</topic><topic>Eulers equations</topic><topic>Mathematical problems</topic><topic>Momentum</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seri, Marcello</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seri, Marcello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The problem of two fixed centers: bifurcation diagram for positive energies</atitle><jtitle>Journal of mathematical physics</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>56</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906068</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2015-01, Vol.56 (1), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2124947824 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Bifurcations Energy Eulers equations Mathematical problems Momentum Physics |
title | The problem of two fixed centers: bifurcation diagram for positive energies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20problem%20of%20two%20fixed%20centers:%20bifurcation%20diagram%20for%20positive%20energies&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Seri,%20Marcello&rft.date=2015-01-01&rft.volume=56&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4906068&rft_dat=%3Cproquest_cross%3E2124947824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651562626&rft_id=info:pmid/&rfr_iscdi=true |