A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence

In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Takenouchi Takashi, Komori Osamu, Eguchi Shinto
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!