A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence
In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We fo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1641 |
creator | Takenouchi Takashi Komori Osamu Eguchi Shinto |
description | In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We focus on a situation that the shared structures among dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss properties of the proposed method and investigate validity of the proposed method with numerical experiments. |
doi_str_mv | 10.1063/1.4905983 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2124947219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947219</sourcerecordid><originalsourceid>FETCH-LOGICAL-j249t-9126afb49d9492f33d8e1d84e03d7680784beab0bbd330788a42147b2be5d45b3</originalsourceid><addsrcrecordid>eNotjc1KAzEYRYMoWKsL3yDgOjV_M0mWpagtFFyo0F1JzDfTmU4TTTJ9fkd0dbhwuAehe0YXjNbikS2koZXR4gLNWFUxompWX6IZpUYSLsXuGt3k3FPKjVJ6hnZLHOIZBuxizKULLbZDG1NXDifcxIRP41A6Umw-4gFsCr-Gsxk8jgGXA-BNscfRW_JmuxKx786QWgifcIuuGjtkuPvnHH08P72v1mT7-rJZLbek59IUYhivbeOk8UYa3gjhNTCvJVDhVa2p0tKBddQ5L8S0tJWcSeW4g8rLyok5evj7_Urxe4Rc9n0cU5iSe86mhFScGfED7jpSaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124947219</pqid></control><display><type>conference_proceeding</type><title>A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence</title><source>AIP Journals Complete</source><creator>Takenouchi Takashi ; Komori Osamu ; Eguchi Shinto</creator><creatorcontrib>Takenouchi Takashi ; Komori Osamu ; Eguchi Shinto</creatorcontrib><description>In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We focus on a situation that the shared structures among dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss properties of the proposed method and investigate validity of the proposed method with numerical experiments.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4905983</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Divergence ; Machine learning</subject><ispartof>AIP Conference Proceedings, 2015, Vol.1641 (1), p.237</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,781,785,790,791,23934,23935,25144,27929</link.rule.ids></links><search><creatorcontrib>Takenouchi Takashi</creatorcontrib><creatorcontrib>Komori Osamu</creatorcontrib><creatorcontrib>Eguchi Shinto</creatorcontrib><title>A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence</title><title>AIP Conference Proceedings</title><description>In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We focus on a situation that the shared structures among dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss properties of the proposed method and investigate validity of the proposed method with numerical experiments.</description><subject>Algorithms</subject><subject>Divergence</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjc1KAzEYRYMoWKsL3yDgOjV_M0mWpagtFFyo0F1JzDfTmU4TTTJ9fkd0dbhwuAehe0YXjNbikS2koZXR4gLNWFUxompWX6IZpUYSLsXuGt3k3FPKjVJ6hnZLHOIZBuxizKULLbZDG1NXDifcxIRP41A6Umw-4gFsCr-Gsxk8jgGXA-BNscfRW_JmuxKx786QWgifcIuuGjtkuPvnHH08P72v1mT7-rJZLbek59IUYhivbeOk8UYa3gjhNTCvJVDhVa2p0tKBddQ5L8S0tJWcSeW4g8rLyok5evj7_Urxe4Rc9n0cU5iSe86mhFScGfED7jpSaw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Takenouchi Takashi</creator><creator>Komori Osamu</creator><creator>Eguchi Shinto</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence</title><author>Takenouchi Takashi ; Komori Osamu ; Eguchi Shinto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j249t-9126afb49d9492f33d8e1d84e03d7680784beab0bbd330788a42147b2be5d45b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Divergence</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takenouchi Takashi</creatorcontrib><creatorcontrib>Komori Osamu</creatorcontrib><creatorcontrib>Eguchi Shinto</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takenouchi Takashi</au><au>Komori Osamu</au><au>Eguchi Shinto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence</atitle><btitle>AIP Conference Proceedings</btitle><date>2015-01-01</date><risdate>2015</risdate><volume>1641</volume><issue>1</issue><epage>237</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We focus on a situation that the shared structures among dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss properties of the proposed method and investigate validity of the proposed method with numerical experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4905983</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2015, Vol.1641 (1), p.237 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2124947219 |
source | AIP Journals Complete |
subjects | Algorithms Divergence Machine learning |
title | A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20boosting%20algorithm%20for%20multi-task%20learning%20based%20on%20the%20Itakuda-Saito%20divergence&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Takenouchi%20Takashi&rft.date=2015-01-01&rft.volume=1641&rft.issue=1&rft.epage=237&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4905983&rft_dat=%3Cproquest%3E2124947219%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124947219&rft_id=info:pmid/&rfr_iscdi=true |