A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence

In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Takenouchi Takashi, Komori Osamu, Eguchi Shinto
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 1
container_start_page
container_title
container_volume 1641
creator Takenouchi Takashi
Komori Osamu
Eguchi Shinto
description In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We focus on a situation that the shared structures among dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss properties of the proposed method and investigate validity of the proposed method with numerical experiments.
doi_str_mv 10.1063/1.4905983
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2124947219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947219</sourcerecordid><originalsourceid>FETCH-LOGICAL-j249t-9126afb49d9492f33d8e1d84e03d7680784beab0bbd330788a42147b2be5d45b3</originalsourceid><addsrcrecordid>eNotjc1KAzEYRYMoWKsL3yDgOjV_M0mWpagtFFyo0F1JzDfTmU4TTTJ9fkd0dbhwuAehe0YXjNbikS2koZXR4gLNWFUxompWX6IZpUYSLsXuGt3k3FPKjVJ6hnZLHOIZBuxizKULLbZDG1NXDifcxIRP41A6Umw-4gFsCr-Gsxk8jgGXA-BNscfRW_JmuxKx786QWgifcIuuGjtkuPvnHH08P72v1mT7-rJZLbek59IUYhivbeOk8UYa3gjhNTCvJVDhVa2p0tKBddQ5L8S0tJWcSeW4g8rLyok5evj7_Urxe4Rc9n0cU5iSe86mhFScGfED7jpSaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124947219</pqid></control><display><type>conference_proceeding</type><title>A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence</title><source>AIP Journals Complete</source><creator>Takenouchi Takashi ; Komori Osamu ; Eguchi Shinto</creator><creatorcontrib>Takenouchi Takashi ; Komori Osamu ; Eguchi Shinto</creatorcontrib><description>In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We focus on a situation that the shared structures among dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss properties of the proposed method and investigate validity of the proposed method with numerical experiments.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4905983</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Divergence ; Machine learning</subject><ispartof>AIP Conference Proceedings, 2015, Vol.1641 (1), p.237</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,781,785,790,791,23934,23935,25144,27929</link.rule.ids></links><search><creatorcontrib>Takenouchi Takashi</creatorcontrib><creatorcontrib>Komori Osamu</creatorcontrib><creatorcontrib>Eguchi Shinto</creatorcontrib><title>A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence</title><title>AIP Conference Proceedings</title><description>In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We focus on a situation that the shared structures among dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss properties of the proposed method and investigate validity of the proposed method with numerical experiments.</description><subject>Algorithms</subject><subject>Divergence</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjc1KAzEYRYMoWKsL3yDgOjV_M0mWpagtFFyo0F1JzDfTmU4TTTJ9fkd0dbhwuAehe0YXjNbikS2koZXR4gLNWFUxompWX6IZpUYSLsXuGt3k3FPKjVJ6hnZLHOIZBuxizKULLbZDG1NXDifcxIRP41A6Umw-4gFsCr-Gsxk8jgGXA-BNscfRW_JmuxKx786QWgifcIuuGjtkuPvnHH08P72v1mT7-rJZLbek59IUYhivbeOk8UYa3gjhNTCvJVDhVa2p0tKBddQ5L8S0tJWcSeW4g8rLyok5evj7_Urxe4Rc9n0cU5iSe86mhFScGfED7jpSaw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Takenouchi Takashi</creator><creator>Komori Osamu</creator><creator>Eguchi Shinto</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence</title><author>Takenouchi Takashi ; Komori Osamu ; Eguchi Shinto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j249t-9126afb49d9492f33d8e1d84e03d7680784beab0bbd330788a42147b2be5d45b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Divergence</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takenouchi Takashi</creatorcontrib><creatorcontrib>Komori Osamu</creatorcontrib><creatorcontrib>Eguchi Shinto</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takenouchi Takashi</au><au>Komori Osamu</au><au>Eguchi Shinto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence</atitle><btitle>AIP Conference Proceedings</btitle><date>2015-01-01</date><risdate>2015</risdate><volume>1641</volume><issue>1</issue><epage>237</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>In this paper, we propose a novel multi-task learning algorithm based on an ensemble learning method. We consider a specific setting of the multi-task learning for binary classification problems, in which features are shared among all tasks and all tasks are targets of performance improvement. We focus on a situation that the shared structures among dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss properties of the proposed method and investigate validity of the proposed method with numerical experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4905983</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2015, Vol.1641 (1), p.237
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2124947219
source AIP Journals Complete
subjects Algorithms
Divergence
Machine learning
title A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20boosting%20algorithm%20for%20multi-task%20learning%20based%20on%20the%20Itakuda-Saito%20divergence&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Takenouchi%20Takashi&rft.date=2015-01-01&rft.volume=1641&rft.issue=1&rft.epage=237&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4905983&rft_dat=%3Cproquest%3E2124947219%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124947219&rft_id=info:pmid/&rfr_iscdi=true