Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors

A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In0.17Al0.83N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-02, Vol.106 (5)
Hauptverfasser: Arulkumaran, S., Ng, G. I., Manoj Kumar, C. M., Ranjan, K., Teo, K. L., Shoron, O. F., Rajan, S., Bin Dolmanan, S., Tripathy, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics letters
container_volume 106
creator Arulkumaran, S.
Ng, G. I.
Manoj Kumar, C. M.
Ranjan, K.
Teo, K. L.
Shoron, O. F.
Rajan, S.
Bin Dolmanan, S.
Tripathy, S.
description A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In0.17Al0.83N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT with 200-nm effective fin-width (Weff) exhibited a very high IDmax of 3940 mA/mm and a highest gm of 1417 mS/mm. This dramatic increase of ID and gm in the 3D TT-gate In0.17Al0.83N/GaN NC Fin-HEMT translated to an extracted highest electron velocity (ve) of 6.0 × 107 cm/s, which is ∼1.89× higher than that of the conventional In0.17Al0.83N/GaN HEMT (3.17 × 107 cm/s). The ve in the conventional III-nitride transistors are typically limited by highly efficient optical-phonon emission. However, the unusually high ve at 300 K in the 3D TT-gate In0.17Al0.83N/GaN NC Fin-HEMT is attributed to the increase of in-plane tensile stress component by SiN passivation in the formed NC which is also verified by micro-photoluminescence (0.47 ± 0.02 GPa) and micro-Raman spectroscopy (0.39 ± 0.12 GPa) measurements. The ability to reach the ve = 6 × 107 cm/s at 300 K by a stress engineered 3D TT-gate lattice-matched In0.17Al0.83N/GaN NC Fin-HEMTs shows they are promising for next-generation ultra-scaled high-speed device applications.
doi_str_mv 10.1063/1.4906970
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124898947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124898947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1370-a6b58b83a1301be802a9df2de586d8f4637cf07e727b9c77d3ac8d2eb6fa30033</originalsourceid><addsrcrecordid>eNotkEFOAjEYhRujiYguvEETVy4K7XSm7SwJQSQS3Oh60un8A0OGFtvBhB1x5wk8kDfxJJbA5v15ycv7_jyE7hkdMCr4kA3SnIpc0gvUY1RKwhlTl6hHKeVE5Bm7RjchrKPNEs576GvSgum8s_gTWmeabo9djcXf4fv3J0qsiGo2w4B1hzml0b3gxuLQeQgBg102FsBDhWd21C6GU73AVltHzEpbCy1eNcsVgTOEbFzZtEdI57UNTeicD7foqtZtgLvz7aP3p8nb-JnMX6ez8WhODOOSEi3KTJWKa8YpK0HRROdVnVSQKVGpOhVcmppKkIkscyNlxbVRVQKlqHV8nPM-ejj1br372EHoirXbeRuRRcKSVOUqT2VMPZ5SxrsQPNTF1jcb7fcFo8Vx4oIV54n5P2QIcZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124898947</pqid></control><display><type>article</type><title>Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Arulkumaran, S. ; Ng, G. I. ; Manoj Kumar, C. M. ; Ranjan, K. ; Teo, K. L. ; Shoron, O. F. ; Rajan, S. ; Bin Dolmanan, S. ; Tripathy, S.</creator><creatorcontrib>Arulkumaran, S. ; Ng, G. I. ; Manoj Kumar, C. M. ; Ranjan, K. ; Teo, K. L. ; Shoron, O. F. ; Rajan, S. ; Bin Dolmanan, S. ; Tripathy, S.</creatorcontrib><description>A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In0.17Al0.83N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT with 200-nm effective fin-width (Weff) exhibited a very high IDmax of 3940 mA/mm and a highest gm of 1417 mS/mm. This dramatic increase of ID and gm in the 3D TT-gate In0.17Al0.83N/GaN NC Fin-HEMT translated to an extracted highest electron velocity (ve) of 6.0 × 107 cm/s, which is ∼1.89× higher than that of the conventional In0.17Al0.83N/GaN HEMT (3.17 × 107 cm/s). The ve in the conventional III-nitride transistors are typically limited by highly efficient optical-phonon emission. However, the unusually high ve at 300 K in the 3D TT-gate In0.17Al0.83N/GaN NC Fin-HEMT is attributed to the increase of in-plane tensile stress component by SiN passivation in the formed NC which is also verified by micro-photoluminescence (0.47 ± 0.02 GPa) and micro-Raman spectroscopy (0.39 ± 0.12 GPa) measurements. The ability to reach the ve = 6 × 107 cm/s at 300 K by a stress engineered 3D TT-gate lattice-matched In0.17Al0.83N/GaN NC Fin-HEMTs shows they are promising for next-generation ultra-scaled high-speed device applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4906970</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electrons ; Gallium nitrides ; High electron mobility transistors ; High speed ; Lattice matching ; Nanochannels ; Photoluminescence ; Raman spectroscopy ; Semiconductor devices ; Tensile stress ; Transistors ; Velocity</subject><ispartof>Applied physics letters, 2015-02, Vol.106 (5)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1370-a6b58b83a1301be802a9df2de586d8f4637cf07e727b9c77d3ac8d2eb6fa30033</citedby><cites>FETCH-LOGICAL-c1370-a6b58b83a1301be802a9df2de586d8f4637cf07e727b9c77d3ac8d2eb6fa30033</cites><orcidid>0000-0001-7589-5273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Arulkumaran, S.</creatorcontrib><creatorcontrib>Ng, G. I.</creatorcontrib><creatorcontrib>Manoj Kumar, C. M.</creatorcontrib><creatorcontrib>Ranjan, K.</creatorcontrib><creatorcontrib>Teo, K. L.</creatorcontrib><creatorcontrib>Shoron, O. F.</creatorcontrib><creatorcontrib>Rajan, S.</creatorcontrib><creatorcontrib>Bin Dolmanan, S.</creatorcontrib><creatorcontrib>Tripathy, S.</creatorcontrib><title>Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors</title><title>Applied physics letters</title><description>A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In0.17Al0.83N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT with 200-nm effective fin-width (Weff) exhibited a very high IDmax of 3940 mA/mm and a highest gm of 1417 mS/mm. This dramatic increase of ID and gm in the 3D TT-gate In0.17Al0.83N/GaN NC Fin-HEMT translated to an extracted highest electron velocity (ve) of 6.0 × 107 cm/s, which is ∼1.89× higher than that of the conventional In0.17Al0.83N/GaN HEMT (3.17 × 107 cm/s). The ve in the conventional III-nitride transistors are typically limited by highly efficient optical-phonon emission. However, the unusually high ve at 300 K in the 3D TT-gate In0.17Al0.83N/GaN NC Fin-HEMT is attributed to the increase of in-plane tensile stress component by SiN passivation in the formed NC which is also verified by micro-photoluminescence (0.47 ± 0.02 GPa) and micro-Raman spectroscopy (0.39 ± 0.12 GPa) measurements. The ability to reach the ve = 6 × 107 cm/s at 300 K by a stress engineered 3D TT-gate lattice-matched In0.17Al0.83N/GaN NC Fin-HEMTs shows they are promising for next-generation ultra-scaled high-speed device applications.</description><subject>Applied physics</subject><subject>Electrons</subject><subject>Gallium nitrides</subject><subject>High electron mobility transistors</subject><subject>High speed</subject><subject>Lattice matching</subject><subject>Nanochannels</subject><subject>Photoluminescence</subject><subject>Raman spectroscopy</subject><subject>Semiconductor devices</subject><subject>Tensile stress</subject><subject>Transistors</subject><subject>Velocity</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEFOAjEYhRujiYguvEETVy4K7XSm7SwJQSQS3Oh60un8A0OGFtvBhB1x5wk8kDfxJJbA5v15ycv7_jyE7hkdMCr4kA3SnIpc0gvUY1RKwhlTl6hHKeVE5Bm7RjchrKPNEs576GvSgum8s_gTWmeabo9djcXf4fv3J0qsiGo2w4B1hzml0b3gxuLQeQgBg102FsBDhWd21C6GU73AVltHzEpbCy1eNcsVgTOEbFzZtEdI57UNTeicD7foqtZtgLvz7aP3p8nb-JnMX6ez8WhODOOSEi3KTJWKa8YpK0HRROdVnVSQKVGpOhVcmppKkIkscyNlxbVRVQKlqHV8nPM-ejj1br372EHoirXbeRuRRcKSVOUqT2VMPZ5SxrsQPNTF1jcb7fcFo8Vx4oIV54n5P2QIcZY</recordid><startdate>20150202</startdate><enddate>20150202</enddate><creator>Arulkumaran, S.</creator><creator>Ng, G. I.</creator><creator>Manoj Kumar, C. M.</creator><creator>Ranjan, K.</creator><creator>Teo, K. L.</creator><creator>Shoron, O. F.</creator><creator>Rajan, S.</creator><creator>Bin Dolmanan, S.</creator><creator>Tripathy, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7589-5273</orcidid></search><sort><creationdate>20150202</creationdate><title>Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors</title><author>Arulkumaran, S. ; Ng, G. I. ; Manoj Kumar, C. M. ; Ranjan, K. ; Teo, K. L. ; Shoron, O. F. ; Rajan, S. ; Bin Dolmanan, S. ; Tripathy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1370-a6b58b83a1301be802a9df2de586d8f4637cf07e727b9c77d3ac8d2eb6fa30033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Electrons</topic><topic>Gallium nitrides</topic><topic>High electron mobility transistors</topic><topic>High speed</topic><topic>Lattice matching</topic><topic>Nanochannels</topic><topic>Photoluminescence</topic><topic>Raman spectroscopy</topic><topic>Semiconductor devices</topic><topic>Tensile stress</topic><topic>Transistors</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arulkumaran, S.</creatorcontrib><creatorcontrib>Ng, G. I.</creatorcontrib><creatorcontrib>Manoj Kumar, C. M.</creatorcontrib><creatorcontrib>Ranjan, K.</creatorcontrib><creatorcontrib>Teo, K. L.</creatorcontrib><creatorcontrib>Shoron, O. F.</creatorcontrib><creatorcontrib>Rajan, S.</creatorcontrib><creatorcontrib>Bin Dolmanan, S.</creatorcontrib><creatorcontrib>Tripathy, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arulkumaran, S.</au><au>Ng, G. I.</au><au>Manoj Kumar, C. M.</au><au>Ranjan, K.</au><au>Teo, K. L.</au><au>Shoron, O. F.</au><au>Rajan, S.</au><au>Bin Dolmanan, S.</au><au>Tripathy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors</atitle><jtitle>Applied physics letters</jtitle><date>2015-02-02</date><risdate>2015</risdate><volume>106</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In0.17Al0.83N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT with 200-nm effective fin-width (Weff) exhibited a very high IDmax of 3940 mA/mm and a highest gm of 1417 mS/mm. This dramatic increase of ID and gm in the 3D TT-gate In0.17Al0.83N/GaN NC Fin-HEMT translated to an extracted highest electron velocity (ve) of 6.0 × 107 cm/s, which is ∼1.89× higher than that of the conventional In0.17Al0.83N/GaN HEMT (3.17 × 107 cm/s). The ve in the conventional III-nitride transistors are typically limited by highly efficient optical-phonon emission. However, the unusually high ve at 300 K in the 3D TT-gate In0.17Al0.83N/GaN NC Fin-HEMT is attributed to the increase of in-plane tensile stress component by SiN passivation in the formed NC which is also verified by micro-photoluminescence (0.47 ± 0.02 GPa) and micro-Raman spectroscopy (0.39 ± 0.12 GPa) measurements. The ability to reach the ve = 6 × 107 cm/s at 300 K by a stress engineered 3D TT-gate lattice-matched In0.17Al0.83N/GaN NC Fin-HEMTs shows they are promising for next-generation ultra-scaled high-speed device applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906970</doi><orcidid>https://orcid.org/0000-0001-7589-5273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-02, Vol.106 (5)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2124898947
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Electrons
Gallium nitrides
High electron mobility transistors
High speed
Lattice matching
Nanochannels
Photoluminescence
Raman spectroscopy
Semiconductor devices
Tensile stress
Transistors
Velocity
title Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20velocity%20of%206%E2%80%89%C3%97%E2%80%89107%E2%80%89cm/s%20at%20300%E2%80%89K%20in%20stress%20engineered%20InAlN/GaN%20nano-channel%20high-electron-mobility%20transistors&rft.jtitle=Applied%20physics%20letters&rft.au=Arulkumaran,%20S.&rft.date=2015-02-02&rft.volume=106&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4906970&rft_dat=%3Cproquest_cross%3E2124898947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124898947&rft_id=info:pmid/&rfr_iscdi=true