Light-trapping and antireflective coatings for amorphous Si-based thin film solar cells
In this paper, we study the efficiency of several types of all-dielectric, non-resonant, antireflection, and light-trapping coatings for the enhancement of photovoltaic absorption in thin-film silicon solar cells. We compare the enhancement of the photovoltaic absorption offered by a square array of...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-05, Vol.117 (20) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the efficiency of several types of all-dielectric, non-resonant, antireflection, and light-trapping coatings for the enhancement of photovoltaic absorption in thin-film silicon solar cells. We compare the enhancement of the photovoltaic absorption offered by a square array of nano-pillar shaped voids in the dielectric covering of the cell with that granted by a flat blooming layer, and a densely packed array of dielectric nanospheres. We optimize these coatings and show that the newly proposed nanostructure allows a significant increase of the photovoltaic absorption. The dependence of antireflection and light-trapping properties on the angle of incidence is numerically investigated, and it is shown that the array of voids keeps optimal also after averaging over the incidence angles. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4921440 |