Deep Transfer Learning for Image‐Based Structural Damage Recognition

This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering 2018-09, Vol.33 (9), p.748-768
Hauptverfasser: Gao, Yuqing, Mosalam, Khalid M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 768
container_issue 9
container_start_page 748
container_title Computer-aided civil and infrastructure engineering
container_volume 33
creator Gao, Yuqing
Mosalam, Khalid M.
description This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four naïve baseline recognition tasks: component type identification, spalling condition check, damage level evaluation, and damage type determination. A relatively small number of images (2,000) are selected from the Structural ImageNet and manually labeled according to the four recognition tasks. In order to avoid overfitting, Transfer Learning (TL) based on VGGNet (Visual Geometry Group) is introduced and applied using two different strategies, namely feature extractor and fine‐tuning. Two experiments are designed based on properties of these two strategies to find the relative optimal model parameters and scope of application. Models obtained by both strategies indicate the promising recognition results and different application potentials where feature extractor and fine‐tuning can be respectively used for preliminary analysis and for further improvement. These results also reveal the potential uses of deep TL in image‐based structural damage recognition.
doi_str_mv 10.1111/mice.12363
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124801678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124801678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4463-350d1aa8bc9ff951bf10cd839f188a58ac147c48b2270db04f2febd2624a763e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsXnyDgTdiarybZo_ZDCxVB6zlks5Oypd1dk11Kbz6Cz-iTuHU9-7_MwPxmBn4IXVMyol3udoWDEWVc8hM0oEKqREupTruepDxJpVbn6CLGDekiBB-g-RSgxqtgy-gh4CXYUBblGvsq4MXOruH78-vBRsjxWxNa17TBbvHUHif4FVy1LoumqMpLdObtNsLVXx2i9_lsNXlKli-Pi8n9MnFCSJ7wMcmptTpzqffpmGaeEpdrnnqqtR1r66hQTuiMMUXyjAjPPGQ5k0xYJTnwIbrp79ah-mghNmZTtaHsXhpGmdCESqU76ranXKhiDOBNHYqdDQdDiTl6MkdP5tdTB9Me3hdbOPxDmufFZNbv_ADcLmrH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124801678</pqid></control><display><type>article</type><title>Deep Transfer Learning for Image‐Based Structural Damage Recognition</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Gao, Yuqing ; Mosalam, Khalid M.</creator><creatorcontrib>Gao, Yuqing ; Mosalam, Khalid M.</creatorcontrib><description>This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four naïve baseline recognition tasks: component type identification, spalling condition check, damage level evaluation, and damage type determination. A relatively small number of images (2,000) are selected from the Structural ImageNet and manually labeled according to the four recognition tasks. In order to avoid overfitting, Transfer Learning (TL) based on VGGNet (Visual Geometry Group) is introduced and applied using two different strategies, namely feature extractor and fine‐tuning. Two experiments are designed based on properties of these two strategies to find the relative optimal model parameters and scope of application. Models obtained by both strategies indicate the promising recognition results and different application potentials where feature extractor and fine‐tuning can be respectively used for preliminary analysis and for further improvement. These results also reveal the potential uses of deep TL in image‐based structural damage recognition.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12363</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Damage assessment ; Feature extraction ; Machine learning ; Object recognition ; Spalling ; Structural damage ; Tuning</subject><ispartof>Computer-aided civil and infrastructure engineering, 2018-09, Vol.33 (9), p.748-768</ispartof><rights>2018</rights><rights>Copyright ©2018 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4463-350d1aa8bc9ff951bf10cd839f188a58ac147c48b2270db04f2febd2624a763e3</citedby><cites>FETCH-LOGICAL-c4463-350d1aa8bc9ff951bf10cd839f188a58ac147c48b2270db04f2febd2624a763e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12363$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12363$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Gao, Yuqing</creatorcontrib><creatorcontrib>Mosalam, Khalid M.</creatorcontrib><title>Deep Transfer Learning for Image‐Based Structural Damage Recognition</title><title>Computer-aided civil and infrastructure engineering</title><description>This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four naïve baseline recognition tasks: component type identification, spalling condition check, damage level evaluation, and damage type determination. A relatively small number of images (2,000) are selected from the Structural ImageNet and manually labeled according to the four recognition tasks. In order to avoid overfitting, Transfer Learning (TL) based on VGGNet (Visual Geometry Group) is introduced and applied using two different strategies, namely feature extractor and fine‐tuning. Two experiments are designed based on properties of these two strategies to find the relative optimal model parameters and scope of application. Models obtained by both strategies indicate the promising recognition results and different application potentials where feature extractor and fine‐tuning can be respectively used for preliminary analysis and for further improvement. These results also reveal the potential uses of deep TL in image‐based structural damage recognition.</description><subject>Damage assessment</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Spalling</subject><subject>Structural damage</subject><subject>Tuning</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsXnyDgTdiarybZo_ZDCxVB6zlks5Oypd1dk11Kbz6Cz-iTuHU9-7_MwPxmBn4IXVMyol3udoWDEWVc8hM0oEKqREupTruepDxJpVbn6CLGDekiBB-g-RSgxqtgy-gh4CXYUBblGvsq4MXOruH78-vBRsjxWxNa17TBbvHUHif4FVy1LoumqMpLdObtNsLVXx2i9_lsNXlKli-Pi8n9MnFCSJ7wMcmptTpzqffpmGaeEpdrnnqqtR1r66hQTuiMMUXyjAjPPGQ5k0xYJTnwIbrp79ah-mghNmZTtaHsXhpGmdCESqU76ranXKhiDOBNHYqdDQdDiTl6MkdP5tdTB9Me3hdbOPxDmufFZNbv_ADcLmrH</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Gao, Yuqing</creator><creator>Mosalam, Khalid M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201809</creationdate><title>Deep Transfer Learning for Image‐Based Structural Damage Recognition</title><author>Gao, Yuqing ; Mosalam, Khalid M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4463-350d1aa8bc9ff951bf10cd839f188a58ac147c48b2270db04f2febd2624a763e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Damage assessment</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Spalling</topic><topic>Structural damage</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yuqing</creatorcontrib><creatorcontrib>Mosalam, Khalid M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yuqing</au><au>Mosalam, Khalid M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Transfer Learning for Image‐Based Structural Damage Recognition</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2018-09</date><risdate>2018</risdate><volume>33</volume><issue>9</issue><spage>748</spage><epage>768</epage><pages>748-768</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four naïve baseline recognition tasks: component type identification, spalling condition check, damage level evaluation, and damage type determination. A relatively small number of images (2,000) are selected from the Structural ImageNet and manually labeled according to the four recognition tasks. In order to avoid overfitting, Transfer Learning (TL) based on VGGNet (Visual Geometry Group) is introduced and applied using two different strategies, namely feature extractor and fine‐tuning. Two experiments are designed based on properties of these two strategies to find the relative optimal model parameters and scope of application. Models obtained by both strategies indicate the promising recognition results and different application potentials where feature extractor and fine‐tuning can be respectively used for preliminary analysis and for further improvement. These results also reveal the potential uses of deep TL in image‐based structural damage recognition.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12363</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2018-09, Vol.33 (9), p.748-768
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_2124801678
source Wiley Online Library - AutoHoldings Journals
subjects Damage assessment
Feature extraction
Machine learning
Object recognition
Spalling
Structural damage
Tuning
title Deep Transfer Learning for Image‐Based Structural Damage Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Transfer%20Learning%20for%20Image%E2%80%90Based%20Structural%20Damage%20Recognition&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Gao,%20Yuqing&rft.date=2018-09&rft.volume=33&rft.issue=9&rft.spage=748&rft.epage=768&rft.pages=748-768&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12363&rft_dat=%3Cproquest_cross%3E2124801678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124801678&rft_id=info:pmid/&rfr_iscdi=true