Deep Transfer Learning for Image‐Based Structural Damage Recognition
This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four n...
Gespeichert in:
Veröffentlicht in: | Computer-aided civil and infrastructure engineering 2018-09, Vol.33 (9), p.748-768 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 768 |
---|---|
container_issue | 9 |
container_start_page | 748 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 33 |
creator | Gao, Yuqing Mosalam, Khalid M. |
description | This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four naïve baseline recognition tasks: component type identification, spalling condition check, damage level evaluation, and damage type determination. A relatively small number of images (2,000) are selected from the Structural ImageNet and manually labeled according to the four recognition tasks. In order to avoid overfitting, Transfer Learning (TL) based on VGGNet (Visual Geometry Group) is introduced and applied using two different strategies, namely feature extractor and fine‐tuning. Two experiments are designed based on properties of these two strategies to find the relative optimal model parameters and scope of application. Models obtained by both strategies indicate the promising recognition results and different application potentials where feature extractor and fine‐tuning can be respectively used for preliminary analysis and for further improvement. These results also reveal the potential uses of deep TL in image‐based structural damage recognition. |
doi_str_mv | 10.1111/mice.12363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124801678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124801678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4463-350d1aa8bc9ff951bf10cd839f188a58ac147c48b2270db04f2febd2624a763e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsXnyDgTdiarybZo_ZDCxVB6zlks5Oypd1dk11Kbz6Cz-iTuHU9-7_MwPxmBn4IXVMyol3udoWDEWVc8hM0oEKqREupTruepDxJpVbn6CLGDekiBB-g-RSgxqtgy-gh4CXYUBblGvsq4MXOruH78-vBRsjxWxNa17TBbvHUHif4FVy1LoumqMpLdObtNsLVXx2i9_lsNXlKli-Pi8n9MnFCSJ7wMcmptTpzqffpmGaeEpdrnnqqtR1r66hQTuiMMUXyjAjPPGQ5k0xYJTnwIbrp79ah-mghNmZTtaHsXhpGmdCESqU76ranXKhiDOBNHYqdDQdDiTl6MkdP5tdTB9Me3hdbOPxDmufFZNbv_ADcLmrH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124801678</pqid></control><display><type>article</type><title>Deep Transfer Learning for Image‐Based Structural Damage Recognition</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Gao, Yuqing ; Mosalam, Khalid M.</creator><creatorcontrib>Gao, Yuqing ; Mosalam, Khalid M.</creatorcontrib><description>This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four naïve baseline recognition tasks: component type identification, spalling condition check, damage level evaluation, and damage type determination. A relatively small number of images (2,000) are selected from the Structural ImageNet and manually labeled according to the four recognition tasks. In order to avoid overfitting, Transfer Learning (TL) based on VGGNet (Visual Geometry Group) is introduced and applied using two different strategies, namely feature extractor and fine‐tuning. Two experiments are designed based on properties of these two strategies to find the relative optimal model parameters and scope of application. Models obtained by both strategies indicate the promising recognition results and different application potentials where feature extractor and fine‐tuning can be respectively used for preliminary analysis and for further improvement. These results also reveal the potential uses of deep TL in image‐based structural damage recognition.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12363</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Damage assessment ; Feature extraction ; Machine learning ; Object recognition ; Spalling ; Structural damage ; Tuning</subject><ispartof>Computer-aided civil and infrastructure engineering, 2018-09, Vol.33 (9), p.748-768</ispartof><rights>2018</rights><rights>Copyright ©2018 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4463-350d1aa8bc9ff951bf10cd839f188a58ac147c48b2270db04f2febd2624a763e3</citedby><cites>FETCH-LOGICAL-c4463-350d1aa8bc9ff951bf10cd839f188a58ac147c48b2270db04f2febd2624a763e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12363$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12363$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Gao, Yuqing</creatorcontrib><creatorcontrib>Mosalam, Khalid M.</creatorcontrib><title>Deep Transfer Learning for Image‐Based Structural Damage Recognition</title><title>Computer-aided civil and infrastructure engineering</title><description>This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four naïve baseline recognition tasks: component type identification, spalling condition check, damage level evaluation, and damage type determination. A relatively small number of images (2,000) are selected from the Structural ImageNet and manually labeled according to the four recognition tasks. In order to avoid overfitting, Transfer Learning (TL) based on VGGNet (Visual Geometry Group) is introduced and applied using two different strategies, namely feature extractor and fine‐tuning. Two experiments are designed based on properties of these two strategies to find the relative optimal model parameters and scope of application. Models obtained by both strategies indicate the promising recognition results and different application potentials where feature extractor and fine‐tuning can be respectively used for preliminary analysis and for further improvement. These results also reveal the potential uses of deep TL in image‐based structural damage recognition.</description><subject>Damage assessment</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Spalling</subject><subject>Structural damage</subject><subject>Tuning</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsXnyDgTdiarybZo_ZDCxVB6zlks5Oypd1dk11Kbz6Cz-iTuHU9-7_MwPxmBn4IXVMyol3udoWDEWVc8hM0oEKqREupTruepDxJpVbn6CLGDekiBB-g-RSgxqtgy-gh4CXYUBblGvsq4MXOruH78-vBRsjxWxNa17TBbvHUHif4FVy1LoumqMpLdObtNsLVXx2i9_lsNXlKli-Pi8n9MnFCSJ7wMcmptTpzqffpmGaeEpdrnnqqtR1r66hQTuiMMUXyjAjPPGQ5k0xYJTnwIbrp79ah-mghNmZTtaHsXhpGmdCESqU76ranXKhiDOBNHYqdDQdDiTl6MkdP5tdTB9Me3hdbOPxDmufFZNbv_ADcLmrH</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Gao, Yuqing</creator><creator>Mosalam, Khalid M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201809</creationdate><title>Deep Transfer Learning for Image‐Based Structural Damage Recognition</title><author>Gao, Yuqing ; Mosalam, Khalid M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4463-350d1aa8bc9ff951bf10cd839f188a58ac147c48b2270db04f2febd2624a763e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Damage assessment</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Spalling</topic><topic>Structural damage</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yuqing</creatorcontrib><creatorcontrib>Mosalam, Khalid M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yuqing</au><au>Mosalam, Khalid M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Transfer Learning for Image‐Based Structural Damage Recognition</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2018-09</date><risdate>2018</risdate><volume>33</volume><issue>9</issue><spage>748</spage><epage>768</epage><pages>748-768</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This article implements the state‐of‐the‐art deep learning technologies for a civil engineering application, namely recognition of structural damage from images. Inspired by ImageNet Challenge and the development of computer hardware, the concept of Structural ImageNet is proposed herein with four naïve baseline recognition tasks: component type identification, spalling condition check, damage level evaluation, and damage type determination. A relatively small number of images (2,000) are selected from the Structural ImageNet and manually labeled according to the four recognition tasks. In order to avoid overfitting, Transfer Learning (TL) based on VGGNet (Visual Geometry Group) is introduced and applied using two different strategies, namely feature extractor and fine‐tuning. Two experiments are designed based on properties of these two strategies to find the relative optimal model parameters and scope of application. Models obtained by both strategies indicate the promising recognition results and different application potentials where feature extractor and fine‐tuning can be respectively used for preliminary analysis and for further improvement. These results also reveal the potential uses of deep TL in image‐based structural damage recognition.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12363</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2018-09, Vol.33 (9), p.748-768 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_2124801678 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Damage assessment Feature extraction Machine learning Object recognition Spalling Structural damage Tuning |
title | Deep Transfer Learning for Image‐Based Structural Damage Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Transfer%20Learning%20for%20Image%E2%80%90Based%20Structural%20Damage%20Recognition&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Gao,%20Yuqing&rft.date=2018-09&rft.volume=33&rft.issue=9&rft.spage=748&rft.epage=768&rft.pages=748-768&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12363&rft_dat=%3Cproquest_cross%3E2124801678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124801678&rft_id=info:pmid/&rfr_iscdi=true |