Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory

We present an impurity solver based on adaptively truncated Hilbert spaces. The solver is particularly suitable for dynamical mean-field theory in circumstances where quantum Monte Carlo approaches are ineffective. It exploits the sparsity structure of quantum impurity models, in which the interacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-08, Vol.96 (8), Article 085139
Hauptverfasser: Go, Ara, Millis, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. B
container_volume 96
creator Go, Ara
Millis, Andrew J.
description We present an impurity solver based on adaptively truncated Hilbert spaces. The solver is particularly suitable for dynamical mean-field theory in circumstances where quantum Monte Carlo approaches are ineffective. It exploits the sparsity structure of quantum impurity models, in which the interactions couple only a small subset of the degrees of freedom. We further introduce an adaptive truncation of the particle or hole excited spaces, which enables computations of Green functions with an accuracy needed to avoid unphysical (sign change of imaginary part) self-energies. The method is benchmarked on the one-dimensional Hubbard model.
doi_str_mv 10.1103/PhysRevB.96.085139
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124766450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124766450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-fb0841b6ccf2006a8d0cb9f1b59836e384c02765f7f5591104048b2a90a912183</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGr_gKuA66k3mUkmWdbiCwqKKLgLmUxCU-ZlkinMv3ek6uocDodzuR9C1wTWhEB--7qf4ps93q0lX4NgJJdnaEELLjMpuTz_9wwu0SrGAwAQDrIEuUCfm1oPyR9tM-EUxs7oZGv85JvKhoTjoI3FlY5z5tthDD5NOPbN0Qbs-oDrqdOtN7rBrdVd5rxtapz2tg_TFbpwuol29atL9PFw_759ynYvj8_bzS4zuWApcxWIglTcGEcBuBY1mEo6UjEpcm5zURigJWeudIzJ-d0CClFRLUFLQonIl-jmtDuE_mu0MalDP4ZuPqkooUXJecFgbtFTy4Q-xmCdGoJvdZgUAfUDUf1BVJKrE8T8G2KuZro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124766450</pqid></control><display><type>article</type><title>Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Go, Ara ; Millis, Andrew J.</creator><creatorcontrib>Go, Ara ; Millis, Andrew J.</creatorcontrib><description>We present an impurity solver based on adaptively truncated Hilbert spaces. The solver is particularly suitable for dynamical mean-field theory in circumstances where quantum Monte Carlo approaches are ineffective. It exploits the sparsity structure of quantum impurity models, in which the interactions couple only a small subset of the degrees of freedom. We further introduce an adaptive truncation of the particle or hole excited spaces, which enables computations of Green functions with an accuracy needed to avoid unphysical (sign change of imaginary part) self-energies. The method is benchmarked on the one-dimensional Hubbard model.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.96.085139</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Computer simulation ; Green's functions ; Hilbert space ; Impurities ; Mean field theory ; Quantum theory</subject><ispartof>Physical review. B, 2017-08, Vol.96 (8), Article 085139</ispartof><rights>Copyright American Physical Society Aug 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-fb0841b6ccf2006a8d0cb9f1b59836e384c02765f7f5591104048b2a90a912183</citedby><cites>FETCH-LOGICAL-c385t-fb0841b6ccf2006a8d0cb9f1b59836e384c02765f7f5591104048b2a90a912183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Go, Ara</creatorcontrib><creatorcontrib>Millis, Andrew J.</creatorcontrib><title>Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory</title><title>Physical review. B</title><description>We present an impurity solver based on adaptively truncated Hilbert spaces. The solver is particularly suitable for dynamical mean-field theory in circumstances where quantum Monte Carlo approaches are ineffective. It exploits the sparsity structure of quantum impurity models, in which the interactions couple only a small subset of the degrees of freedom. We further introduce an adaptive truncation of the particle or hole excited spaces, which enables computations of Green functions with an accuracy needed to avoid unphysical (sign change of imaginary part) self-energies. The method is benchmarked on the one-dimensional Hubbard model.</description><subject>Computer simulation</subject><subject>Green's functions</subject><subject>Hilbert space</subject><subject>Impurities</subject><subject>Mean field theory</subject><subject>Quantum theory</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGr_gKuA66k3mUkmWdbiCwqKKLgLmUxCU-ZlkinMv3ek6uocDodzuR9C1wTWhEB--7qf4ps93q0lX4NgJJdnaEELLjMpuTz_9wwu0SrGAwAQDrIEuUCfm1oPyR9tM-EUxs7oZGv85JvKhoTjoI3FlY5z5tthDD5NOPbN0Qbs-oDrqdOtN7rBrdVd5rxtapz2tg_TFbpwuol29atL9PFw_759ynYvj8_bzS4zuWApcxWIglTcGEcBuBY1mEo6UjEpcm5zURigJWeudIzJ-d0CClFRLUFLQonIl-jmtDuE_mu0MalDP4ZuPqkooUXJecFgbtFTy4Q-xmCdGoJvdZgUAfUDUf1BVJKrE8T8G2KuZro</recordid><startdate>20170828</startdate><enddate>20170828</enddate><creator>Go, Ara</creator><creator>Millis, Andrew J.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170828</creationdate><title>Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory</title><author>Go, Ara ; Millis, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-fb0841b6ccf2006a8d0cb9f1b59836e384c02765f7f5591104048b2a90a912183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Green's functions</topic><topic>Hilbert space</topic><topic>Impurities</topic><topic>Mean field theory</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Go, Ara</creatorcontrib><creatorcontrib>Millis, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Go, Ara</au><au>Millis, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory</atitle><jtitle>Physical review. B</jtitle><date>2017-08-28</date><risdate>2017</risdate><volume>96</volume><issue>8</issue><artnum>085139</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present an impurity solver based on adaptively truncated Hilbert spaces. The solver is particularly suitable for dynamical mean-field theory in circumstances where quantum Monte Carlo approaches are ineffective. It exploits the sparsity structure of quantum impurity models, in which the interactions couple only a small subset of the degrees of freedom. We further introduce an adaptive truncation of the particle or hole excited spaces, which enables computations of Green functions with an accuracy needed to avoid unphysical (sign change of imaginary part) self-energies. The method is benchmarked on the one-dimensional Hubbard model.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.96.085139</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2017-08, Vol.96 (8), Article 085139
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2124766450
source APS: American Physical Society E-Journals (Physics)
subjects Computer simulation
Green's functions
Hilbert space
Impurities
Mean field theory
Quantum theory
title Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptively%20truncated%20Hilbert%20space%20based%20impurity%20solver%20for%20dynamical%20mean-field%20theory&rft.jtitle=Physical%20review.%20B&rft.au=Go,%20Ara&rft.date=2017-08-28&rft.volume=96&rft.issue=8&rft.artnum=085139&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.96.085139&rft_dat=%3Cproquest_cross%3E2124766450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124766450&rft_id=info:pmid/&rfr_iscdi=true