First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases
Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pre...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-06, Vol.117 (24) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 117 |
creator | Ouyang, Tao Hu, Ming |
description | Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pressure zinc blende and high pressure cinnabar phases. The results show that the phononic thermal conductivity of high pressure cinnabar phase HgTe is more than an order of magnitude lower than that for the low pressure zinc blende phase. This is mainly originated from the suppressed group velocity and reduced phonon relaxation time due to the nature of mixed phonon branches in the cinnabar phase of HgTe. Based on the new and precise value of the lattice thermal conductivity calculated in this work, the figure of merit of HgTe is re-calculated and the maximum figure of merit is found to approach 1.4 at room temperature. Our first principles study highlights the high pressure HgTe phase as a very promising candidate for thermoelectric applications and provides the insight for exploring other similar materials at high pressure phases in the future. |
doi_str_mv | 10.1063/1.4922978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124738871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124738871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-78c9fd14305c522ddebc7bc1a8ea2d9572e341586eaaf234af63409f29dd37593</originalsourceid><addsrcrecordid>eNotUMFKAzEUDKJgrR78g4AnD1vzkt0mOUqxVih4qeclm7zYlO3ummSF_r0r7WlgZphhhpBHYAtgS_ECi1JzrqW6IjNgSheyqtg1mTHGoVBa6ltyl9KBMQAl9Iw06xBTLoYYOhuGFhNNeXQn2ne0NTkHizTvMR5NS23fudHm8BvypPsz32OLNsdgE91875CGjrrgPUbsMh32JmG6JzfetAkfLjgnX-u33WpTbD_fP1av28KCkrmQymrvoBSsshXnzmFjZWPBKDTc6UpyFCVUaonGeC5K45eiZNpz7ZyQlRZz8nTOHWL_M2LK9aEfYzdV1hx4KYVSEibX89llY59SRF9P248mnmpg9f-FNdSXC8Uf3k9kjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124738871</pqid></control><display><type>article</type><title>First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ouyang, Tao ; Hu, Ming</creator><creatorcontrib>Ouyang, Tao ; Hu, Ming</creatorcontrib><description>Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pressure zinc blende and high pressure cinnabar phases. The results show that the phononic thermal conductivity of high pressure cinnabar phase HgTe is more than an order of magnitude lower than that for the low pressure zinc blende phase. This is mainly originated from the suppressed group velocity and reduced phonon relaxation time due to the nature of mixed phonon branches in the cinnabar phase of HgTe. Based on the new and precise value of the lattice thermal conductivity calculated in this work, the figure of merit of HgTe is re-calculated and the maximum figure of merit is found to approach 1.4 at room temperature. Our first principles study highlights the high pressure HgTe phase as a very promising candidate for thermoelectric applications and provides the insight for exploring other similar materials at high pressure phases in the future.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4922978</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boltzmann transport equation ; Figure of merit ; First principles ; Group velocity ; Heat conductivity ; Heat transfer ; Low pressure ; Mathematical analysis ; Performance prediction ; Phases ; Relaxation time ; Thermal conductivity ; Thermoelectricity ; Zincblende</subject><ispartof>Journal of applied physics, 2015-06, Vol.117 (24)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-78c9fd14305c522ddebc7bc1a8ea2d9572e341586eaaf234af63409f29dd37593</citedby><cites>FETCH-LOGICAL-c187t-78c9fd14305c522ddebc7bc1a8ea2d9572e341586eaaf234af63409f29dd37593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ouyang, Tao</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><title>First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases</title><title>Journal of applied physics</title><description>Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pressure zinc blende and high pressure cinnabar phases. The results show that the phononic thermal conductivity of high pressure cinnabar phase HgTe is more than an order of magnitude lower than that for the low pressure zinc blende phase. This is mainly originated from the suppressed group velocity and reduced phonon relaxation time due to the nature of mixed phonon branches in the cinnabar phase of HgTe. Based on the new and precise value of the lattice thermal conductivity calculated in this work, the figure of merit of HgTe is re-calculated and the maximum figure of merit is found to approach 1.4 at room temperature. Our first principles study highlights the high pressure HgTe phase as a very promising candidate for thermoelectric applications and provides the insight for exploring other similar materials at high pressure phases in the future.</description><subject>Applied physics</subject><subject>Boltzmann transport equation</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Group velocity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Low pressure</subject><subject>Mathematical analysis</subject><subject>Performance prediction</subject><subject>Phases</subject><subject>Relaxation time</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Zincblende</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUMFKAzEUDKJgrR78g4AnD1vzkt0mOUqxVih4qeclm7zYlO3ummSF_r0r7WlgZphhhpBHYAtgS_ECi1JzrqW6IjNgSheyqtg1mTHGoVBa6ltyl9KBMQAl9Iw06xBTLoYYOhuGFhNNeXQn2ne0NTkHizTvMR5NS23fudHm8BvypPsz32OLNsdgE91875CGjrrgPUbsMh32JmG6JzfetAkfLjgnX-u33WpTbD_fP1av28KCkrmQymrvoBSsshXnzmFjZWPBKDTc6UpyFCVUaonGeC5K45eiZNpz7ZyQlRZz8nTOHWL_M2LK9aEfYzdV1hx4KYVSEibX89llY59SRF9P248mnmpg9f-FNdSXC8Uf3k9kjQ</recordid><startdate>20150628</startdate><enddate>20150628</enddate><creator>Ouyang, Tao</creator><creator>Hu, Ming</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150628</creationdate><title>First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases</title><author>Ouyang, Tao ; Hu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-78c9fd14305c522ddebc7bc1a8ea2d9572e341586eaaf234af63409f29dd37593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Boltzmann transport equation</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Group velocity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Low pressure</topic><topic>Mathematical analysis</topic><topic>Performance prediction</topic><topic>Phases</topic><topic>Relaxation time</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Tao</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Tao</au><au>Hu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases</atitle><jtitle>Journal of applied physics</jtitle><date>2015-06-28</date><risdate>2015</risdate><volume>117</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pressure zinc blende and high pressure cinnabar phases. The results show that the phononic thermal conductivity of high pressure cinnabar phase HgTe is more than an order of magnitude lower than that for the low pressure zinc blende phase. This is mainly originated from the suppressed group velocity and reduced phonon relaxation time due to the nature of mixed phonon branches in the cinnabar phase of HgTe. Based on the new and precise value of the lattice thermal conductivity calculated in this work, the figure of merit of HgTe is re-calculated and the maximum figure of merit is found to approach 1.4 at room temperature. Our first principles study highlights the high pressure HgTe phase as a very promising candidate for thermoelectric applications and provides the insight for exploring other similar materials at high pressure phases in the future.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4922978</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2015-06, Vol.117 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2124738871 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Boltzmann transport equation Figure of merit First principles Group velocity Heat conductivity Heat transfer Low pressure Mathematical analysis Performance prediction Phases Relaxation time Thermal conductivity Thermoelectricity Zincblende |
title | First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20on%20lattice%20thermal%20conductivity%20of%20thermoelectrics%20HgTe%20in%20different%20phases&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ouyang,%20Tao&rft.date=2015-06-28&rft.volume=117&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4922978&rft_dat=%3Cproquest_cross%3E2124738871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124738871&rft_id=info:pmid/&rfr_iscdi=true |