First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases

Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-06, Vol.117 (24)
Hauptverfasser: Ouyang, Tao, Hu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 117
creator Ouyang, Tao
Hu, Ming
description Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pressure zinc blende and high pressure cinnabar phases. The results show that the phononic thermal conductivity of high pressure cinnabar phase HgTe is more than an order of magnitude lower than that for the low pressure zinc blende phase. This is mainly originated from the suppressed group velocity and reduced phonon relaxation time due to the nature of mixed phonon branches in the cinnabar phase of HgTe. Based on the new and precise value of the lattice thermal conductivity calculated in this work, the figure of merit of HgTe is re-calculated and the maximum figure of merit is found to approach 1.4 at room temperature. Our first principles study highlights the high pressure HgTe phase as a very promising candidate for thermoelectric applications and provides the insight for exploring other similar materials at high pressure phases in the future.
doi_str_mv 10.1063/1.4922978
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124738871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124738871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-78c9fd14305c522ddebc7bc1a8ea2d9572e341586eaaf234af63409f29dd37593</originalsourceid><addsrcrecordid>eNotUMFKAzEUDKJgrR78g4AnD1vzkt0mOUqxVih4qeclm7zYlO3ummSF_r0r7WlgZphhhpBHYAtgS_ECi1JzrqW6IjNgSheyqtg1mTHGoVBa6ltyl9KBMQAl9Iw06xBTLoYYOhuGFhNNeXQn2ne0NTkHizTvMR5NS23fudHm8BvypPsz32OLNsdgE91875CGjrrgPUbsMh32JmG6JzfetAkfLjgnX-u33WpTbD_fP1av28KCkrmQymrvoBSsshXnzmFjZWPBKDTc6UpyFCVUaonGeC5K45eiZNpz7ZyQlRZz8nTOHWL_M2LK9aEfYzdV1hx4KYVSEibX89llY59SRF9P248mnmpg9f-FNdSXC8Uf3k9kjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124738871</pqid></control><display><type>article</type><title>First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ouyang, Tao ; Hu, Ming</creator><creatorcontrib>Ouyang, Tao ; Hu, Ming</creatorcontrib><description>Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pressure zinc blende and high pressure cinnabar phases. The results show that the phononic thermal conductivity of high pressure cinnabar phase HgTe is more than an order of magnitude lower than that for the low pressure zinc blende phase. This is mainly originated from the suppressed group velocity and reduced phonon relaxation time due to the nature of mixed phonon branches in the cinnabar phase of HgTe. Based on the new and precise value of the lattice thermal conductivity calculated in this work, the figure of merit of HgTe is re-calculated and the maximum figure of merit is found to approach 1.4 at room temperature. Our first principles study highlights the high pressure HgTe phase as a very promising candidate for thermoelectric applications and provides the insight for exploring other similar materials at high pressure phases in the future.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4922978</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boltzmann transport equation ; Figure of merit ; First principles ; Group velocity ; Heat conductivity ; Heat transfer ; Low pressure ; Mathematical analysis ; Performance prediction ; Phases ; Relaxation time ; Thermal conductivity ; Thermoelectricity ; Zincblende</subject><ispartof>Journal of applied physics, 2015-06, Vol.117 (24)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-78c9fd14305c522ddebc7bc1a8ea2d9572e341586eaaf234af63409f29dd37593</citedby><cites>FETCH-LOGICAL-c187t-78c9fd14305c522ddebc7bc1a8ea2d9572e341586eaaf234af63409f29dd37593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ouyang, Tao</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><title>First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases</title><title>Journal of applied physics</title><description>Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pressure zinc blende and high pressure cinnabar phases. The results show that the phononic thermal conductivity of high pressure cinnabar phase HgTe is more than an order of magnitude lower than that for the low pressure zinc blende phase. This is mainly originated from the suppressed group velocity and reduced phonon relaxation time due to the nature of mixed phonon branches in the cinnabar phase of HgTe. Based on the new and precise value of the lattice thermal conductivity calculated in this work, the figure of merit of HgTe is re-calculated and the maximum figure of merit is found to approach 1.4 at room temperature. Our first principles study highlights the high pressure HgTe phase as a very promising candidate for thermoelectric applications and provides the insight for exploring other similar materials at high pressure phases in the future.</description><subject>Applied physics</subject><subject>Boltzmann transport equation</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Group velocity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Low pressure</subject><subject>Mathematical analysis</subject><subject>Performance prediction</subject><subject>Phases</subject><subject>Relaxation time</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Zincblende</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUMFKAzEUDKJgrR78g4AnD1vzkt0mOUqxVih4qeclm7zYlO3ummSF_r0r7WlgZphhhpBHYAtgS_ECi1JzrqW6IjNgSheyqtg1mTHGoVBa6ltyl9KBMQAl9Iw06xBTLoYYOhuGFhNNeXQn2ne0NTkHizTvMR5NS23fudHm8BvypPsz32OLNsdgE91875CGjrrgPUbsMh32JmG6JzfetAkfLjgnX-u33WpTbD_fP1av28KCkrmQymrvoBSsshXnzmFjZWPBKDTc6UpyFCVUaonGeC5K45eiZNpz7ZyQlRZz8nTOHWL_M2LK9aEfYzdV1hx4KYVSEibX89llY59SRF9P248mnmpg9f-FNdSXC8Uf3k9kjQ</recordid><startdate>20150628</startdate><enddate>20150628</enddate><creator>Ouyang, Tao</creator><creator>Hu, Ming</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150628</creationdate><title>First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases</title><author>Ouyang, Tao ; Hu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-78c9fd14305c522ddebc7bc1a8ea2d9572e341586eaaf234af63409f29dd37593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Boltzmann transport equation</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Group velocity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Low pressure</topic><topic>Mathematical analysis</topic><topic>Performance prediction</topic><topic>Phases</topic><topic>Relaxation time</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Tao</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Tao</au><au>Hu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases</atitle><jtitle>Journal of applied physics</jtitle><date>2015-06-28</date><risdate>2015</risdate><volume>117</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Accurate description of thermal conductivity of high pressure phase of materials is a key for predicting the thermoelectric performance. In this paper, by combining first-principle calculation and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity of HgTe in low pressure zinc blende and high pressure cinnabar phases. The results show that the phononic thermal conductivity of high pressure cinnabar phase HgTe is more than an order of magnitude lower than that for the low pressure zinc blende phase. This is mainly originated from the suppressed group velocity and reduced phonon relaxation time due to the nature of mixed phonon branches in the cinnabar phase of HgTe. Based on the new and precise value of the lattice thermal conductivity calculated in this work, the figure of merit of HgTe is re-calculated and the maximum figure of merit is found to approach 1.4 at room temperature. Our first principles study highlights the high pressure HgTe phase as a very promising candidate for thermoelectric applications and provides the insight for exploring other similar materials at high pressure phases in the future.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4922978</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2015-06, Vol.117 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2124738871
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Boltzmann transport equation
Figure of merit
First principles
Group velocity
Heat conductivity
Heat transfer
Low pressure
Mathematical analysis
Performance prediction
Phases
Relaxation time
Thermal conductivity
Thermoelectricity
Zincblende
title First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20on%20lattice%20thermal%20conductivity%20of%20thermoelectrics%20HgTe%20in%20different%20phases&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ouyang,%20Tao&rft.date=2015-06-28&rft.volume=117&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4922978&rft_dat=%3Cproquest_cross%3E2124738871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124738871&rft_id=info:pmid/&rfr_iscdi=true