Efficiency Exceeding 20% in Perovskite Solar Cells with Side‐Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers

Attaining high quality perovskite films with enhanced morphology, high efficiency, and better stability is a great research challenge. Here, a side‐chain liquid crystalline polymer (SCLCP) is incorporated as a dopant into the perovskite film to achieve perovskite solar cells (PSCs) with high efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-10, Vol.8 (30), p.n/a
Hauptverfasser: Arivunithi, Veera Murugan, Reddy, Saripally Sudhaker, Sree, Vijaya Gopalan, Park, Ho‐Yeol, Park, Juuyn, Kang, Yong‐Cheol, Shin, Eun‐Sol, Noh, Yong‐Young, Song, Myungkwan, Jin, Sung‐Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page
container_title Advanced energy materials
container_volume 8
creator Arivunithi, Veera Murugan
Reddy, Saripally Sudhaker
Sree, Vijaya Gopalan
Park, Ho‐Yeol
Park, Juuyn
Kang, Yong‐Cheol
Shin, Eun‐Sol
Noh, Yong‐Young
Song, Myungkwan
Jin, Sung‐Ho
description Attaining high quality perovskite films with enhanced morphology, high efficiency, and better stability is a great research challenge. Here, a side‐chain liquid crystalline polymer (SCLCP) is incorporated as a dopant into the perovskite film to achieve perovskite solar cells (PSCs) with high efficiency and long‐term stability. SCLCP doping increases the grain size in the crystalline perovskite film by controlled solvent evaporation and reduced grain boundaries, which slow the material degradation and reduce the charge recombination. Using this approach, the PSC power conversion efficiency (PCE) is significantly boosted from 18.0% (nondoped) to 20.63% for the SCLCP‐doped perovskite film with much improved air stability. Furthermore, the trap state density in the SCLCP‐doped films is decreased because the SCLCP effectively passivates the perovskite grain surface. Notably, the SCLCP appears to act as a bridge between grains for effective charge transfer from perovskite toward the electrode, which would partially explain the enhanced efficiency and stability. A smart strategy of doping side‐chain liquid crystalline polymer (SCLCP) into perovskite films enhances the grain size in the crystalline perovskite film, reduces the grain boundaries and charge recombination, and thereby affords a power conversion efficiency of 20.63% in perovskite solar cells with negligible hysteresis and much improved stability.
doi_str_mv 10.1002/aenm.201801637
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124710637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124710637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-50496ae709c53e7cb3a8d54044f90ce09a50b2ce1bca1df4a4c492e2a60fefd53</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQh4MoWLRXzwviMXV2s0maY4nxD1QtVM_LZjOxW9Ok3U2tAQ99BME37JOYUqnenMvM4fvNDJ_jnFHoUQB2KbGc9RjQPtDACw-cDg0od4M-h8P97LFjp2vtFNriEQXP6zgfSZ5rpbFUDUneFWKmyxfC4ILokozQVG_2VddIxlUhDYmxKCxZ6XpCxjrDzfoznsgWHOrFUmckNo2tZVHoEsmoKpoZms3666qaY_Z31yC1lUnR2FPnKJeFxe5PP3Ger5On-NYdPt7cxYOhqzw_CF2__TaQGEKkfA9DlXqyn_kcOM8jUAiR9CFlCmmqJM1yLrniEUMmA8gxz3zvxDnf7Z2barFEW4tptTRle1IwynhIoXXWUr0dpUxlrcFczI2eSdMICmIrWWwli73kNhDtAitdYPMPLQbJw_1v9huN7IOX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124710637</pqid></control><display><type>article</type><title>Efficiency Exceeding 20% in Perovskite Solar Cells with Side‐Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Arivunithi, Veera Murugan ; Reddy, Saripally Sudhaker ; Sree, Vijaya Gopalan ; Park, Ho‐Yeol ; Park, Juuyn ; Kang, Yong‐Cheol ; Shin, Eun‐Sol ; Noh, Yong‐Young ; Song, Myungkwan ; Jin, Sung‐Ho</creator><creatorcontrib>Arivunithi, Veera Murugan ; Reddy, Saripally Sudhaker ; Sree, Vijaya Gopalan ; Park, Ho‐Yeol ; Park, Juuyn ; Kang, Yong‐Cheol ; Shin, Eun‐Sol ; Noh, Yong‐Young ; Song, Myungkwan ; Jin, Sung‐Ho</creatorcontrib><description>Attaining high quality perovskite films with enhanced morphology, high efficiency, and better stability is a great research challenge. Here, a side‐chain liquid crystalline polymer (SCLCP) is incorporated as a dopant into the perovskite film to achieve perovskite solar cells (PSCs) with high efficiency and long‐term stability. SCLCP doping increases the grain size in the crystalline perovskite film by controlled solvent evaporation and reduced grain boundaries, which slow the material degradation and reduce the charge recombination. Using this approach, the PSC power conversion efficiency (PCE) is significantly boosted from 18.0% (nondoped) to 20.63% for the SCLCP‐doped perovskite film with much improved air stability. Furthermore, the trap state density in the SCLCP‐doped films is decreased because the SCLCP effectively passivates the perovskite grain surface. Notably, the SCLCP appears to act as a bridge between grains for effective charge transfer from perovskite toward the electrode, which would partially explain the enhanced efficiency and stability. A smart strategy of doping side‐chain liquid crystalline polymer (SCLCP) into perovskite films enhances the grain size in the crystalline perovskite film, reduces the grain boundaries and charge recombination, and thereby affords a power conversion efficiency of 20.63% in perovskite solar cells with negligible hysteresis and much improved stability.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801637</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chains (polymeric) ; Charge transfer ; Crystal structure ; Crystallinity ; Doped films ; Efficiency ; Energy conversion efficiency ; Grain ; Grain boundaries ; high efficiency ; Liquid crystals ; Morphology ; passivation ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Polymers ; side‐chain liquid crystalline polymers ; Solar cells ; Stability</subject><ispartof>Advanced energy materials, 2018-10, Vol.8 (30), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-50496ae709c53e7cb3a8d54044f90ce09a50b2ce1bca1df4a4c492e2a60fefd53</citedby><cites>FETCH-LOGICAL-c3567-50496ae709c53e7cb3a8d54044f90ce09a50b2ce1bca1df4a4c492e2a60fefd53</cites><orcidid>0000-0001-6631-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Arivunithi, Veera Murugan</creatorcontrib><creatorcontrib>Reddy, Saripally Sudhaker</creatorcontrib><creatorcontrib>Sree, Vijaya Gopalan</creatorcontrib><creatorcontrib>Park, Ho‐Yeol</creatorcontrib><creatorcontrib>Park, Juuyn</creatorcontrib><creatorcontrib>Kang, Yong‐Cheol</creatorcontrib><creatorcontrib>Shin, Eun‐Sol</creatorcontrib><creatorcontrib>Noh, Yong‐Young</creatorcontrib><creatorcontrib>Song, Myungkwan</creatorcontrib><creatorcontrib>Jin, Sung‐Ho</creatorcontrib><title>Efficiency Exceeding 20% in Perovskite Solar Cells with Side‐Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers</title><title>Advanced energy materials</title><description>Attaining high quality perovskite films with enhanced morphology, high efficiency, and better stability is a great research challenge. Here, a side‐chain liquid crystalline polymer (SCLCP) is incorporated as a dopant into the perovskite film to achieve perovskite solar cells (PSCs) with high efficiency and long‐term stability. SCLCP doping increases the grain size in the crystalline perovskite film by controlled solvent evaporation and reduced grain boundaries, which slow the material degradation and reduce the charge recombination. Using this approach, the PSC power conversion efficiency (PCE) is significantly boosted from 18.0% (nondoped) to 20.63% for the SCLCP‐doped perovskite film with much improved air stability. Furthermore, the trap state density in the SCLCP‐doped films is decreased because the SCLCP effectively passivates the perovskite grain surface. Notably, the SCLCP appears to act as a bridge between grains for effective charge transfer from perovskite toward the electrode, which would partially explain the enhanced efficiency and stability. A smart strategy of doping side‐chain liquid crystalline polymer (SCLCP) into perovskite films enhances the grain size in the crystalline perovskite film, reduces the grain boundaries and charge recombination, and thereby affords a power conversion efficiency of 20.63% in perovskite solar cells with negligible hysteresis and much improved stability.</description><subject>Chains (polymeric)</subject><subject>Charge transfer</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Doped films</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Grain</subject><subject>Grain boundaries</subject><subject>high efficiency</subject><subject>Liquid crystals</subject><subject>Morphology</subject><subject>passivation</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>side‐chain liquid crystalline polymers</subject><subject>Solar cells</subject><subject>Stability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQh4MoWLRXzwviMXV2s0maY4nxD1QtVM_LZjOxW9Ok3U2tAQ99BME37JOYUqnenMvM4fvNDJ_jnFHoUQB2KbGc9RjQPtDACw-cDg0od4M-h8P97LFjp2vtFNriEQXP6zgfSZ5rpbFUDUneFWKmyxfC4ILokozQVG_2VddIxlUhDYmxKCxZ6XpCxjrDzfoznsgWHOrFUmckNo2tZVHoEsmoKpoZms3666qaY_Z31yC1lUnR2FPnKJeFxe5PP3Ger5On-NYdPt7cxYOhqzw_CF2__TaQGEKkfA9DlXqyn_kcOM8jUAiR9CFlCmmqJM1yLrniEUMmA8gxz3zvxDnf7Z2barFEW4tptTRle1IwynhIoXXWUr0dpUxlrcFczI2eSdMICmIrWWwli73kNhDtAitdYPMPLQbJw_1v9huN7IOX</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>Arivunithi, Veera Murugan</creator><creator>Reddy, Saripally Sudhaker</creator><creator>Sree, Vijaya Gopalan</creator><creator>Park, Ho‐Yeol</creator><creator>Park, Juuyn</creator><creator>Kang, Yong‐Cheol</creator><creator>Shin, Eun‐Sol</creator><creator>Noh, Yong‐Young</creator><creator>Song, Myungkwan</creator><creator>Jin, Sung‐Ho</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6631-983X</orcidid></search><sort><creationdate>20181025</creationdate><title>Efficiency Exceeding 20% in Perovskite Solar Cells with Side‐Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers</title><author>Arivunithi, Veera Murugan ; Reddy, Saripally Sudhaker ; Sree, Vijaya Gopalan ; Park, Ho‐Yeol ; Park, Juuyn ; Kang, Yong‐Cheol ; Shin, Eun‐Sol ; Noh, Yong‐Young ; Song, Myungkwan ; Jin, Sung‐Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-50496ae709c53e7cb3a8d54044f90ce09a50b2ce1bca1df4a4c492e2a60fefd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chains (polymeric)</topic><topic>Charge transfer</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Doped films</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Grain</topic><topic>Grain boundaries</topic><topic>high efficiency</topic><topic>Liquid crystals</topic><topic>Morphology</topic><topic>passivation</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>side‐chain liquid crystalline polymers</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arivunithi, Veera Murugan</creatorcontrib><creatorcontrib>Reddy, Saripally Sudhaker</creatorcontrib><creatorcontrib>Sree, Vijaya Gopalan</creatorcontrib><creatorcontrib>Park, Ho‐Yeol</creatorcontrib><creatorcontrib>Park, Juuyn</creatorcontrib><creatorcontrib>Kang, Yong‐Cheol</creatorcontrib><creatorcontrib>Shin, Eun‐Sol</creatorcontrib><creatorcontrib>Noh, Yong‐Young</creatorcontrib><creatorcontrib>Song, Myungkwan</creatorcontrib><creatorcontrib>Jin, Sung‐Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arivunithi, Veera Murugan</au><au>Reddy, Saripally Sudhaker</au><au>Sree, Vijaya Gopalan</au><au>Park, Ho‐Yeol</au><au>Park, Juuyn</au><au>Kang, Yong‐Cheol</au><au>Shin, Eun‐Sol</au><au>Noh, Yong‐Young</au><au>Song, Myungkwan</au><au>Jin, Sung‐Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency Exceeding 20% in Perovskite Solar Cells with Side‐Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers</atitle><jtitle>Advanced energy materials</jtitle><date>2018-10-25</date><risdate>2018</risdate><volume>8</volume><issue>30</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Attaining high quality perovskite films with enhanced morphology, high efficiency, and better stability is a great research challenge. Here, a side‐chain liquid crystalline polymer (SCLCP) is incorporated as a dopant into the perovskite film to achieve perovskite solar cells (PSCs) with high efficiency and long‐term stability. SCLCP doping increases the grain size in the crystalline perovskite film by controlled solvent evaporation and reduced grain boundaries, which slow the material degradation and reduce the charge recombination. Using this approach, the PSC power conversion efficiency (PCE) is significantly boosted from 18.0% (nondoped) to 20.63% for the SCLCP‐doped perovskite film with much improved air stability. Furthermore, the trap state density in the SCLCP‐doped films is decreased because the SCLCP effectively passivates the perovskite grain surface. Notably, the SCLCP appears to act as a bridge between grains for effective charge transfer from perovskite toward the electrode, which would partially explain the enhanced efficiency and stability. A smart strategy of doping side‐chain liquid crystalline polymer (SCLCP) into perovskite films enhances the grain size in the crystalline perovskite film, reduces the grain boundaries and charge recombination, and thereby affords a power conversion efficiency of 20.63% in perovskite solar cells with negligible hysteresis and much improved stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801637</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6631-983X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-10, Vol.8 (30), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2124710637
source Wiley Online Library - AutoHoldings Journals
subjects Chains (polymeric)
Charge transfer
Crystal structure
Crystallinity
Doped films
Efficiency
Energy conversion efficiency
Grain
Grain boundaries
high efficiency
Liquid crystals
Morphology
passivation
perovskite solar cells
Perovskites
Photovoltaic cells
Polymers
side‐chain liquid crystalline polymers
Solar cells
Stability
title Efficiency Exceeding 20% in Perovskite Solar Cells with Side‐Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20Exceeding%2020%25%20in%20Perovskite%20Solar%20Cells%20with%20Side%E2%80%90Chain%20Liquid%20Crystalline%20Polymer%E2%80%93Doped%20Perovskite%20Absorbers&rft.jtitle=Advanced%20energy%20materials&rft.au=Arivunithi,%20Veera%20Murugan&rft.date=2018-10-25&rft.volume=8&rft.issue=30&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801637&rft_dat=%3Cproquest_cross%3E2124710637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124710637&rft_id=info:pmid/&rfr_iscdi=true