Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet

The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Narayana, Mahesha, Metri, Prashant G., Silvestrov, Sergei
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 020109
container_title
container_volume 1798
creator Narayana, Mahesha
Metri, Prashant G.
Silvestrov, Sergei
description The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study.
doi_str_mv 10.1063/1.4972701
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2124697366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124697366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8b1e7fc92542f8da35c7c000deec1d35f8851523a36f00489688e500be60ce323</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMPsGoX_oOAO3HqzTuzLPUJohsVXYU0k7GRadLOZCz-e0daXB24fHzccxA6IzAhINkVmfBSUQVkD42IEKRQksh9NC6VBsUEJ1xyfYBGACUvKGfvR-i4674AaKmUHqGPl4Vvl8nZVWga2_7gukkbnGpscUyxePKbnGKwEUcbUxPWfahwHZolTt--xcO9j132tvrBXW59dosQP3G38D6fosPaNp0f7_IEvd7evMzui8fnu4fZ9LFwtBS50HPiVe1KKjitdWWZcMoBQOW9IxUTtdaCCMoskzUA16XU2guAuZfgPKPsBF1uvd3Gr_q5WbVhORQxyQZzHd6mJrWfZlktDBtgPeDnW3zVpnXvu2y-Ut_G4UNDCeWyVEzKgbrYSV3INocU_70EzN_yhpjd8uwXmWBzUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124697366</pqid></control><display><type>conference_proceeding</type><title>Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet</title><source>AIP Journals Complete</source><creator>Narayana, Mahesha ; Metri, Prashant G. ; Silvestrov, Sergei</creator><contributor>Sivasundaram, Seenith</contributor><creatorcontrib>Narayana, Mahesha ; Metri, Prashant G. ; Silvestrov, Sergei ; Sivasundaram, Seenith</creatorcontrib><description>The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735414648</identifier><identifier>ISBN: 0735414645</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4972701</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layer equations ; Boundary value problems ; Carboxymethyl cellulose ; Differential equations ; Effective medium theory ; Laminar flow ; liquid film ; matematik/tillämpad matematik ; Mathematical models ; Mathematics/Applied Mathematics ; Nanoparticles ; Nonlinear equations ; Ordinary differential equations ; Runge-Kutta method ; Stretching ; Surface tension ; Thermal conductivity ; Thermocapillary flow ; Thin films ; unsteady stretching sheet ; Viscosity</subject><ispartof>AIP Conference Proceedings, 2017, Vol.1798 (1), p.020109</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8b1e7fc92542f8da35c7c000deec1d35f8851523a36f00489688e500be60ce323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4972701$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,885,4512,23930,23931,25140,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-33238$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Sivasundaram, Seenith</contributor><creatorcontrib>Narayana, Mahesha</creatorcontrib><creatorcontrib>Metri, Prashant G.</creatorcontrib><creatorcontrib>Silvestrov, Sergei</creatorcontrib><title>Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet</title><title>AIP Conference Proceedings</title><description>The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study.</description><subject>Boundary layer equations</subject><subject>Boundary value problems</subject><subject>Carboxymethyl cellulose</subject><subject>Differential equations</subject><subject>Effective medium theory</subject><subject>Laminar flow</subject><subject>liquid film</subject><subject>matematik/tillämpad matematik</subject><subject>Mathematical models</subject><subject>Mathematics/Applied Mathematics</subject><subject>Nanoparticles</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Runge-Kutta method</subject><subject>Stretching</subject><subject>Surface tension</subject><subject>Thermal conductivity</subject><subject>Thermocapillary flow</subject><subject>Thin films</subject><subject>unsteady stretching sheet</subject><subject>Viscosity</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735414648</isbn><isbn>0735414645</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kEtLAzEUhYMPsGoX_oOAO3HqzTuzLPUJohsVXYU0k7GRadLOZCz-e0daXB24fHzccxA6IzAhINkVmfBSUQVkD42IEKRQksh9NC6VBsUEJ1xyfYBGACUvKGfvR-i4674AaKmUHqGPl4Vvl8nZVWga2_7gukkbnGpscUyxePKbnGKwEUcbUxPWfahwHZolTt--xcO9j132tvrBXW59dosQP3G38D6fosPaNp0f7_IEvd7evMzui8fnu4fZ9LFwtBS50HPiVe1KKjitdWWZcMoBQOW9IxUTtdaCCMoskzUA16XU2guAuZfgPKPsBF1uvd3Gr_q5WbVhORQxyQZzHd6mJrWfZlktDBtgPeDnW3zVpnXvu2y-Ut_G4UNDCeWyVEzKgbrYSV3INocU_70EzN_yhpjd8uwXmWBzUA</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Narayana, Mahesha</creator><creator>Metri, Prashant G.</creator><creator>Silvestrov, Sergei</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DF7</scope></search><sort><creationdate>20170127</creationdate><title>Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet</title><author>Narayana, Mahesha ; Metri, Prashant G. ; Silvestrov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8b1e7fc92542f8da35c7c000deec1d35f8851523a36f00489688e500be60ce323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary layer equations</topic><topic>Boundary value problems</topic><topic>Carboxymethyl cellulose</topic><topic>Differential equations</topic><topic>Effective medium theory</topic><topic>Laminar flow</topic><topic>liquid film</topic><topic>matematik/tillämpad matematik</topic><topic>Mathematical models</topic><topic>Mathematics/Applied Mathematics</topic><topic>Nanoparticles</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Runge-Kutta method</topic><topic>Stretching</topic><topic>Surface tension</topic><topic>Thermal conductivity</topic><topic>Thermocapillary flow</topic><topic>Thin films</topic><topic>unsteady stretching sheet</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayana, Mahesha</creatorcontrib><creatorcontrib>Metri, Prashant G.</creatorcontrib><creatorcontrib>Silvestrov, Sergei</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Mälardalens högskola</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayana, Mahesha</au><au>Metri, Prashant G.</au><au>Silvestrov, Sergei</au><au>Sivasundaram, Seenith</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet</atitle><btitle>AIP Conference Proceedings</btitle><date>2017-01-27</date><risdate>2017</risdate><volume>1798</volume><issue>1</issue><spage>020109</spage><pages>020109-</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735414648</isbn><isbn>0735414645</isbn><coden>APCPCS</coden><abstract>The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4972701</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2017, Vol.1798 (1), p.020109
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2124697366
source AIP Journals Complete
subjects Boundary layer equations
Boundary value problems
Carboxymethyl cellulose
Differential equations
Effective medium theory
Laminar flow
liquid film
matematik/tillämpad matematik
Mathematical models
Mathematics/Applied Mathematics
Nanoparticles
Nonlinear equations
Ordinary differential equations
Runge-Kutta method
Stretching
Surface tension
Thermal conductivity
Thermocapillary flow
Thin films
unsteady stretching sheet
Viscosity
title Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermocapillary%20flow%20of%20a%20non-Newtonian%20nanoliquid%20film%20over%20an%20unsteady%20stretching%20sheet&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Narayana,%20Mahesha&rft.date=2017-01-27&rft.volume=1798&rft.issue=1&rft.spage=020109&rft.pages=020109-&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735414648&rft.isbn_list=0735414645&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4972701&rft_dat=%3Cproquest_swepu%3E2124697366%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124697366&rft_id=info:pmid/&rfr_iscdi=true