Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet
The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanol...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 020109 |
container_title | |
container_volume | 1798 |
creator | Narayana, Mahesha Metri, Prashant G. Silvestrov, Sergei |
description | The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study. |
doi_str_mv | 10.1063/1.4972701 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2124697366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124697366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8b1e7fc92542f8da35c7c000deec1d35f8851523a36f00489688e500be60ce323</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMPsGoX_oOAO3HqzTuzLPUJohsVXYU0k7GRadLOZCz-e0daXB24fHzccxA6IzAhINkVmfBSUQVkD42IEKRQksh9NC6VBsUEJ1xyfYBGACUvKGfvR-i4674AaKmUHqGPl4Vvl8nZVWga2_7gukkbnGpscUyxePKbnGKwEUcbUxPWfahwHZolTt--xcO9j132tvrBXW59dosQP3G38D6fosPaNp0f7_IEvd7evMzui8fnu4fZ9LFwtBS50HPiVe1KKjitdWWZcMoBQOW9IxUTtdaCCMoskzUA16XU2guAuZfgPKPsBF1uvd3Gr_q5WbVhORQxyQZzHd6mJrWfZlktDBtgPeDnW3zVpnXvu2y-Ut_G4UNDCeWyVEzKgbrYSV3INocU_70EzN_yhpjd8uwXmWBzUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124697366</pqid></control><display><type>conference_proceeding</type><title>Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet</title><source>AIP Journals Complete</source><creator>Narayana, Mahesha ; Metri, Prashant G. ; Silvestrov, Sergei</creator><contributor>Sivasundaram, Seenith</contributor><creatorcontrib>Narayana, Mahesha ; Metri, Prashant G. ; Silvestrov, Sergei ; Sivasundaram, Seenith</creatorcontrib><description>The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735414648</identifier><identifier>ISBN: 0735414645</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4972701</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layer equations ; Boundary value problems ; Carboxymethyl cellulose ; Differential equations ; Effective medium theory ; Laminar flow ; liquid film ; matematik/tillämpad matematik ; Mathematical models ; Mathematics/Applied Mathematics ; Nanoparticles ; Nonlinear equations ; Ordinary differential equations ; Runge-Kutta method ; Stretching ; Surface tension ; Thermal conductivity ; Thermocapillary flow ; Thin films ; unsteady stretching sheet ; Viscosity</subject><ispartof>AIP Conference Proceedings, 2017, Vol.1798 (1), p.020109</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8b1e7fc92542f8da35c7c000deec1d35f8851523a36f00489688e500be60ce323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4972701$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,885,4512,23930,23931,25140,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-33238$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Sivasundaram, Seenith</contributor><creatorcontrib>Narayana, Mahesha</creatorcontrib><creatorcontrib>Metri, Prashant G.</creatorcontrib><creatorcontrib>Silvestrov, Sergei</creatorcontrib><title>Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet</title><title>AIP Conference Proceedings</title><description>The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study.</description><subject>Boundary layer equations</subject><subject>Boundary value problems</subject><subject>Carboxymethyl cellulose</subject><subject>Differential equations</subject><subject>Effective medium theory</subject><subject>Laminar flow</subject><subject>liquid film</subject><subject>matematik/tillämpad matematik</subject><subject>Mathematical models</subject><subject>Mathematics/Applied Mathematics</subject><subject>Nanoparticles</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Runge-Kutta method</subject><subject>Stretching</subject><subject>Surface tension</subject><subject>Thermal conductivity</subject><subject>Thermocapillary flow</subject><subject>Thin films</subject><subject>unsteady stretching sheet</subject><subject>Viscosity</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735414648</isbn><isbn>0735414645</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kEtLAzEUhYMPsGoX_oOAO3HqzTuzLPUJohsVXYU0k7GRadLOZCz-e0daXB24fHzccxA6IzAhINkVmfBSUQVkD42IEKRQksh9NC6VBsUEJ1xyfYBGACUvKGfvR-i4674AaKmUHqGPl4Vvl8nZVWga2_7gukkbnGpscUyxePKbnGKwEUcbUxPWfahwHZolTt--xcO9j132tvrBXW59dosQP3G38D6fosPaNp0f7_IEvd7evMzui8fnu4fZ9LFwtBS50HPiVe1KKjitdWWZcMoBQOW9IxUTtdaCCMoskzUA16XU2guAuZfgPKPsBF1uvd3Gr_q5WbVhORQxyQZzHd6mJrWfZlktDBtgPeDnW3zVpnXvu2y-Ut_G4UNDCeWyVEzKgbrYSV3INocU_70EzN_yhpjd8uwXmWBzUA</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Narayana, Mahesha</creator><creator>Metri, Prashant G.</creator><creator>Silvestrov, Sergei</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DF7</scope></search><sort><creationdate>20170127</creationdate><title>Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet</title><author>Narayana, Mahesha ; Metri, Prashant G. ; Silvestrov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8b1e7fc92542f8da35c7c000deec1d35f8851523a36f00489688e500be60ce323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary layer equations</topic><topic>Boundary value problems</topic><topic>Carboxymethyl cellulose</topic><topic>Differential equations</topic><topic>Effective medium theory</topic><topic>Laminar flow</topic><topic>liquid film</topic><topic>matematik/tillämpad matematik</topic><topic>Mathematical models</topic><topic>Mathematics/Applied Mathematics</topic><topic>Nanoparticles</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Runge-Kutta method</topic><topic>Stretching</topic><topic>Surface tension</topic><topic>Thermal conductivity</topic><topic>Thermocapillary flow</topic><topic>Thin films</topic><topic>unsteady stretching sheet</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayana, Mahesha</creatorcontrib><creatorcontrib>Metri, Prashant G.</creatorcontrib><creatorcontrib>Silvestrov, Sergei</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Mälardalens högskola</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayana, Mahesha</au><au>Metri, Prashant G.</au><au>Silvestrov, Sergei</au><au>Sivasundaram, Seenith</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet</atitle><btitle>AIP Conference Proceedings</btitle><date>2017-01-27</date><risdate>2017</risdate><volume>1798</volume><issue>1</issue><spage>020109</spage><pages>020109-</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735414648</isbn><isbn>0735414645</isbn><coden>APCPCS</coden><abstract>The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4972701</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2017, Vol.1798 (1), p.020109 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2124697366 |
source | AIP Journals Complete |
subjects | Boundary layer equations Boundary value problems Carboxymethyl cellulose Differential equations Effective medium theory Laminar flow liquid film matematik/tillämpad matematik Mathematical models Mathematics/Applied Mathematics Nanoparticles Nonlinear equations Ordinary differential equations Runge-Kutta method Stretching Surface tension Thermal conductivity Thermocapillary flow Thin films unsteady stretching sheet Viscosity |
title | Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermocapillary%20flow%20of%20a%20non-Newtonian%20nanoliquid%20film%20over%20an%20unsteady%20stretching%20sheet&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Narayana,%20Mahesha&rft.date=2017-01-27&rft.volume=1798&rft.issue=1&rft.spage=020109&rft.pages=020109-&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735414648&rft.isbn_list=0735414645&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4972701&rft_dat=%3Cproquest_swepu%3E2124697366%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124697366&rft_id=info:pmid/&rfr_iscdi=true |