Nonlinear mathematical models for paths maintaining constant normal accelerations
New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the infl...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1798 |
creator | Pakdemirli, Mehmet Yıldız, Volkan |
description | New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the influence of drag force only. The equation is cast into a dimensionless form first. Numerical solution of the resulting nonlinear third order differential equation is contrasted with the perturbation solution. When the perturbation parameter is small, the match is excellent. The derived paths may found applications in the motion of land, marine and aerial vehicles. |
doi_str_mv | 10.1063/1.4972713 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124696218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124696218</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-4779fea2cc73a7c7386faad8691aa2d4cab880837de8a89341a85d289cc849363</originalsourceid><addsrcrecordid>eNp9kMlKBDEQhoMoOI4efIMGb0KP2TrLUQY3GBRBwVso02ntoTtpk4zg2xudAW8e6i-o_6uFQuiU4AXBgl2QBdeSSsL20Iw0DamlIGIfzTDWvKacvRyio5TWGFMtpZqhx_vgh947iNUI-d0V6S0M1RhaN6SqC7GaSj0Vt_e5RO_fKht8yuBz5UMcCwzWusHF0lqMY3TQwZDcyS7P0fP11dPytl493NwtL1f1RBuWay6l7hxQayUDWUSJDqBVQhMA2nILr0phxWTrFCjNOAHVtFRpaxXXTLA5OtvOnWL42LiUzTpsoi8rDSWUCy0oUYU631LJ9vn3QDPFfoT4ZQg2Py8zxOxe9h_8GeIfaKa2Y9_TK22n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124696218</pqid></control><display><type>conference_proceeding</type><title>Nonlinear mathematical models for paths maintaining constant normal accelerations</title><source>Scitation (American Institute of Physics)</source><creator>Pakdemirli, Mehmet ; Yıldız, Volkan</creator><contributor>Sivasundaram, Seenith</contributor><creatorcontrib>Pakdemirli, Mehmet ; Yıldız, Volkan ; Sivasundaram, Seenith</creatorcontrib><description>New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the influence of drag force only. The equation is cast into a dimensionless form first. Numerical solution of the resulting nonlinear third order differential equation is contrasted with the perturbation solution. When the perturbation parameter is small, the match is excellent. The derived paths may found applications in the motion of land, marine and aerial vehicles.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4972713</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deceleration ; Differential equations ; Dimensionless numbers ; Drag ; Mathematical models</subject><ispartof>AIP conference proceedings, 2017, Vol.1798 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4972713$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Sivasundaram, Seenith</contributor><creatorcontrib>Pakdemirli, Mehmet</creatorcontrib><creatorcontrib>Yıldız, Volkan</creatorcontrib><title>Nonlinear mathematical models for paths maintaining constant normal accelerations</title><title>AIP conference proceedings</title><description>New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the influence of drag force only. The equation is cast into a dimensionless form first. Numerical solution of the resulting nonlinear third order differential equation is contrasted with the perturbation solution. When the perturbation parameter is small, the match is excellent. The derived paths may found applications in the motion of land, marine and aerial vehicles.</description><subject>Deceleration</subject><subject>Differential equations</subject><subject>Dimensionless numbers</subject><subject>Drag</subject><subject>Mathematical models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMlKBDEQhoMoOI4efIMGb0KP2TrLUQY3GBRBwVso02ntoTtpk4zg2xudAW8e6i-o_6uFQuiU4AXBgl2QBdeSSsL20Iw0DamlIGIfzTDWvKacvRyio5TWGFMtpZqhx_vgh947iNUI-d0V6S0M1RhaN6SqC7GaSj0Vt_e5RO_fKht8yuBz5UMcCwzWusHF0lqMY3TQwZDcyS7P0fP11dPytl493NwtL1f1RBuWay6l7hxQayUDWUSJDqBVQhMA2nILr0phxWTrFCjNOAHVtFRpaxXXTLA5OtvOnWL42LiUzTpsoi8rDSWUCy0oUYU631LJ9vn3QDPFfoT4ZQg2Py8zxOxe9h_8GeIfaKa2Y9_TK22n</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Pakdemirli, Mehmet</creator><creator>Yıldız, Volkan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170127</creationdate><title>Nonlinear mathematical models for paths maintaining constant normal accelerations</title><author>Pakdemirli, Mehmet ; Yıldız, Volkan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-4779fea2cc73a7c7386faad8691aa2d4cab880837de8a89341a85d289cc849363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deceleration</topic><topic>Differential equations</topic><topic>Dimensionless numbers</topic><topic>Drag</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pakdemirli, Mehmet</creatorcontrib><creatorcontrib>Yıldız, Volkan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakdemirli, Mehmet</au><au>Yıldız, Volkan</au><au>Sivasundaram, Seenith</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear mathematical models for paths maintaining constant normal accelerations</atitle><btitle>AIP conference proceedings</btitle><date>2017-01-27</date><risdate>2017</risdate><volume>1798</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the influence of drag force only. The equation is cast into a dimensionless form first. Numerical solution of the resulting nonlinear third order differential equation is contrasted with the perturbation solution. When the perturbation parameter is small, the match is excellent. The derived paths may found applications in the motion of land, marine and aerial vehicles.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4972713</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1798 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2124696218 |
source | Scitation (American Institute of Physics) |
subjects | Deceleration Differential equations Dimensionless numbers Drag Mathematical models |
title | Nonlinear mathematical models for paths maintaining constant normal accelerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20mathematical%20models%20for%20paths%20maintaining%20constant%20normal%20accelerations&rft.btitle=AIP%20conference%20proceedings&rft.au=Pakdemirli,%20Mehmet&rft.date=2017-01-27&rft.volume=1798&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4972713&rft_dat=%3Cproquest_scita%3E2124696218%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124696218&rft_id=info:pmid/&rfr_iscdi=true |