Nonlinear mathematical models for paths maintaining constant normal accelerations

New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the infl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pakdemirli, Mehmet, Yıldız, Volkan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1798
creator Pakdemirli, Mehmet
Yıldız, Volkan
description New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the influence of drag force only. The equation is cast into a dimensionless form first. Numerical solution of the resulting nonlinear third order differential equation is contrasted with the perturbation solution. When the perturbation parameter is small, the match is excellent. The derived paths may found applications in the motion of land, marine and aerial vehicles.
doi_str_mv 10.1063/1.4972713
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124696218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124696218</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-4779fea2cc73a7c7386faad8691aa2d4cab880837de8a89341a85d289cc849363</originalsourceid><addsrcrecordid>eNp9kMlKBDEQhoMoOI4efIMGb0KP2TrLUQY3GBRBwVso02ntoTtpk4zg2xudAW8e6i-o_6uFQuiU4AXBgl2QBdeSSsL20Iw0DamlIGIfzTDWvKacvRyio5TWGFMtpZqhx_vgh947iNUI-d0V6S0M1RhaN6SqC7GaSj0Vt_e5RO_fKht8yuBz5UMcCwzWusHF0lqMY3TQwZDcyS7P0fP11dPytl493NwtL1f1RBuWay6l7hxQayUDWUSJDqBVQhMA2nILr0phxWTrFCjNOAHVtFRpaxXXTLA5OtvOnWL42LiUzTpsoi8rDSWUCy0oUYU631LJ9vn3QDPFfoT4ZQg2Py8zxOxe9h_8GeIfaKa2Y9_TK22n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124696218</pqid></control><display><type>conference_proceeding</type><title>Nonlinear mathematical models for paths maintaining constant normal accelerations</title><source>Scitation (American Institute of Physics)</source><creator>Pakdemirli, Mehmet ; Yıldız, Volkan</creator><contributor>Sivasundaram, Seenith</contributor><creatorcontrib>Pakdemirli, Mehmet ; Yıldız, Volkan ; Sivasundaram, Seenith</creatorcontrib><description>New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the influence of drag force only. The equation is cast into a dimensionless form first. Numerical solution of the resulting nonlinear third order differential equation is contrasted with the perturbation solution. When the perturbation parameter is small, the match is excellent. The derived paths may found applications in the motion of land, marine and aerial vehicles.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4972713</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deceleration ; Differential equations ; Dimensionless numbers ; Drag ; Mathematical models</subject><ispartof>AIP conference proceedings, 2017, Vol.1798 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4972713$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Sivasundaram, Seenith</contributor><creatorcontrib>Pakdemirli, Mehmet</creatorcontrib><creatorcontrib>Yıldız, Volkan</creatorcontrib><title>Nonlinear mathematical models for paths maintaining constant normal accelerations</title><title>AIP conference proceedings</title><description>New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the influence of drag force only. The equation is cast into a dimensionless form first. Numerical solution of the resulting nonlinear third order differential equation is contrasted with the perturbation solution. When the perturbation parameter is small, the match is excellent. The derived paths may found applications in the motion of land, marine and aerial vehicles.</description><subject>Deceleration</subject><subject>Differential equations</subject><subject>Dimensionless numbers</subject><subject>Drag</subject><subject>Mathematical models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMlKBDEQhoMoOI4efIMGb0KP2TrLUQY3GBRBwVso02ntoTtpk4zg2xudAW8e6i-o_6uFQuiU4AXBgl2QBdeSSsL20Iw0DamlIGIfzTDWvKacvRyio5TWGFMtpZqhx_vgh947iNUI-d0V6S0M1RhaN6SqC7GaSj0Vt_e5RO_fKht8yuBz5UMcCwzWusHF0lqMY3TQwZDcyS7P0fP11dPytl493NwtL1f1RBuWay6l7hxQayUDWUSJDqBVQhMA2nILr0phxWTrFCjNOAHVtFRpaxXXTLA5OtvOnWL42LiUzTpsoi8rDSWUCy0oUYU631LJ9vn3QDPFfoT4ZQg2Py8zxOxe9h_8GeIfaKa2Y9_TK22n</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Pakdemirli, Mehmet</creator><creator>Yıldız, Volkan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170127</creationdate><title>Nonlinear mathematical models for paths maintaining constant normal accelerations</title><author>Pakdemirli, Mehmet ; Yıldız, Volkan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-4779fea2cc73a7c7386faad8691aa2d4cab880837de8a89341a85d289cc849363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deceleration</topic><topic>Differential equations</topic><topic>Dimensionless numbers</topic><topic>Drag</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pakdemirli, Mehmet</creatorcontrib><creatorcontrib>Yıldız, Volkan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakdemirli, Mehmet</au><au>Yıldız, Volkan</au><au>Sivasundaram, Seenith</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear mathematical models for paths maintaining constant normal accelerations</atitle><btitle>AIP conference proceedings</btitle><date>2017-01-27</date><risdate>2017</risdate><volume>1798</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>New path equations maintaining constant normal accelerations with arbitrary tangential decelerations for a moving object is derived. The case of tangential deceleration proportional to the square of velocity is treated in detail. It is assumed that in this special case, the vehicle is under the influence of drag force only. The equation is cast into a dimensionless form first. Numerical solution of the resulting nonlinear third order differential equation is contrasted with the perturbation solution. When the perturbation parameter is small, the match is excellent. The derived paths may found applications in the motion of land, marine and aerial vehicles.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4972713</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1798 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2124696218
source Scitation (American Institute of Physics)
subjects Deceleration
Differential equations
Dimensionless numbers
Drag
Mathematical models
title Nonlinear mathematical models for paths maintaining constant normal accelerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20mathematical%20models%20for%20paths%20maintaining%20constant%20normal%20accelerations&rft.btitle=AIP%20conference%20proceedings&rft.au=Pakdemirli,%20Mehmet&rft.date=2017-01-27&rft.volume=1798&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4972713&rft_dat=%3Cproquest_scita%3E2124696218%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124696218&rft_id=info:pmid/&rfr_iscdi=true