Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising
Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing moti...
Gespeichert in:
Veröffentlicht in: | Journal of imaging 2015-12, Vol.1 (1), p.60-84 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 60 |
container_title | Journal of imaging |
container_volume | 1 |
creator | Dey, Nilanjan Ashour, Amira Beagum, Samsad Pistola, Dimitra Gospodinov, Mitko Gospodinova, Еvgeniya Tavares, João |
description | Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing motion, body fat, etc. Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation based intersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters. This filter requires an adjustment of the ICI parameters for efficient window size selection. From the wide range of ICI parametric values, finding out the best set of tunes values is itself an optimization problem. The present study proposed a novel technique for parameter optimization of LPA-ICI filter using genetic algorithm (GA) for brain MR images de-noising. The experimental results proved that the proposed method outperforms the LPA-ICI method for de-noising in terms of various performance metrics for different noise variance levels. Obtained results reports that the ICI parameter values depend on the noise variance and the concerned under test image. |
doi_str_mv | 10.3390/jimaging1010060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124673495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124673495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f5e54585a1772ea65fd73dfa126776dc09e1774972beb68966e3dac9d5c000653</originalsourceid><addsrcrecordid>eNpdUd9LwzAQDqLgmHv2NeBzXdK06epbnW4WphviwLeSpdeZ0SYzqeL8o_wbTTdB8eG44-6777sfCJ1TcslYSoYb1Yi10mtKKCGcHKFeyCgLIsaej__Ep2jg3IYQQtPQW9pDXwthRQMtWDzftqpRn6JVRuPKWDwzUtR4YeqdNo3yYbbdWvPhpfaQlXBQ4lz7XgdynxobXakStIRD_t03TVTdsS-dHw9PQUOrJM7qtbGqfWmucKY73lrJX-FrK5TG9485zv1agG8geDCqIzhDJ5WoHQx-fB8tJ7dP47tgNp_m42wWSMZ4G1QxxFE8igVNkhAEj6syYWUlaMiThJeSpOArUZqEK1jxUco5sFLItIylPw6PWR9dHHj9wq9v4NpiY96s9pJFSMOIJyxKO9TwgJLWOGehKrbWX8fuCkqK7i_Fv7-wb2nGhQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124673495</pqid></control><display><type>article</type><title>Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Dey, Nilanjan ; Ashour, Amira ; Beagum, Samsad ; Pistola, Dimitra ; Gospodinov, Mitko ; Gospodinova, Еvgeniya ; Tavares, João</creator><creatorcontrib>Dey, Nilanjan ; Ashour, Amira ; Beagum, Samsad ; Pistola, Dimitra ; Gospodinov, Mitko ; Gospodinova, Еvgeniya ; Tavares, João</creatorcontrib><description>Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing motion, body fat, etc. Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation based intersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters. This filter requires an adjustment of the ICI parameters for efficient window size selection. From the wide range of ICI parametric values, finding out the best set of tunes values is itself an optimization problem. The present study proposed a novel technique for parameter optimization of LPA-ICI filter using genetic algorithm (GA) for brain MR images de-noising. The experimental results proved that the proposed method outperforms the LPA-ICI method for de-noising in terms of various performance metrics for different noise variance levels. Obtained results reports that the ICI parameter values depend on the noise variance and the concerned under test image.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging1010060</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Background noise ; Brain ; Brain research ; Confidence intervals ; Diagnosis ; Genetic algorithms ; Information technology ; Magnetic resonance imaging ; Mathematical analysis ; Medical imaging ; Methods ; NMR ; Noise ; Noise reduction ; Nuclear magnetic resonance ; Optimization ; Parameter estimation ; Parameters ; Performance measurement ; Polynomials ; Signal processing</subject><ispartof>Journal of imaging, 2015-12, Vol.1 (1), p.60-84</ispartof><rights>2015. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f5e54585a1772ea65fd73dfa126776dc09e1774972beb68966e3dac9d5c000653</citedby><cites>FETCH-LOGICAL-c336t-f5e54585a1772ea65fd73dfa126776dc09e1774972beb68966e3dac9d5c000653</cites><orcidid>0000-0001-7603-6526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Dey, Nilanjan</creatorcontrib><creatorcontrib>Ashour, Amira</creatorcontrib><creatorcontrib>Beagum, Samsad</creatorcontrib><creatorcontrib>Pistola, Dimitra</creatorcontrib><creatorcontrib>Gospodinov, Mitko</creatorcontrib><creatorcontrib>Gospodinova, Еvgeniya</creatorcontrib><creatorcontrib>Tavares, João</creatorcontrib><title>Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising</title><title>Journal of imaging</title><description>Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing motion, body fat, etc. Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation based intersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters. This filter requires an adjustment of the ICI parameters for efficient window size selection. From the wide range of ICI parametric values, finding out the best set of tunes values is itself an optimization problem. The present study proposed a novel technique for parameter optimization of LPA-ICI filter using genetic algorithm (GA) for brain MR images de-noising. The experimental results proved that the proposed method outperforms the LPA-ICI method for de-noising in terms of various performance metrics for different noise variance levels. Obtained results reports that the ICI parameter values depend on the noise variance and the concerned under test image.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Background noise</subject><subject>Brain</subject><subject>Brain research</subject><subject>Confidence intervals</subject><subject>Diagnosis</subject><subject>Genetic algorithms</subject><subject>Information technology</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>NMR</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Performance measurement</subject><subject>Polynomials</subject><subject>Signal processing</subject><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUd9LwzAQDqLgmHv2NeBzXdK06epbnW4WphviwLeSpdeZ0SYzqeL8o_wbTTdB8eG44-6777sfCJ1TcslYSoYb1Yi10mtKKCGcHKFeyCgLIsaej__Ep2jg3IYQQtPQW9pDXwthRQMtWDzftqpRn6JVRuPKWDwzUtR4YeqdNo3yYbbdWvPhpfaQlXBQ4lz7XgdynxobXakStIRD_t03TVTdsS-dHw9PQUOrJM7qtbGqfWmucKY73lrJX-FrK5TG9485zv1agG8geDCqIzhDJ5WoHQx-fB8tJ7dP47tgNp_m42wWSMZ4G1QxxFE8igVNkhAEj6syYWUlaMiThJeSpOArUZqEK1jxUco5sFLItIylPw6PWR9dHHj9wq9v4NpiY96s9pJFSMOIJyxKO9TwgJLWOGehKrbWX8fuCkqK7i_Fv7-wb2nGhQg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Dey, Nilanjan</creator><creator>Ashour, Amira</creator><creator>Beagum, Samsad</creator><creator>Pistola, Dimitra</creator><creator>Gospodinov, Mitko</creator><creator>Gospodinova, Еvgeniya</creator><creator>Tavares, João</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7603-6526</orcidid></search><sort><creationdate>20151201</creationdate><title>Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising</title><author>Dey, Nilanjan ; Ashour, Amira ; Beagum, Samsad ; Pistola, Dimitra ; Gospodinov, Mitko ; Gospodinova, Еvgeniya ; Tavares, João</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f5e54585a1772ea65fd73dfa126776dc09e1774972beb68966e3dac9d5c000653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Background noise</topic><topic>Brain</topic><topic>Brain research</topic><topic>Confidence intervals</topic><topic>Diagnosis</topic><topic>Genetic algorithms</topic><topic>Information technology</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>NMR</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Performance measurement</topic><topic>Polynomials</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, Nilanjan</creatorcontrib><creatorcontrib>Ashour, Amira</creatorcontrib><creatorcontrib>Beagum, Samsad</creatorcontrib><creatorcontrib>Pistola, Dimitra</creatorcontrib><creatorcontrib>Gospodinov, Mitko</creatorcontrib><creatorcontrib>Gospodinova, Еvgeniya</creatorcontrib><creatorcontrib>Tavares, João</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, Nilanjan</au><au>Ashour, Amira</au><au>Beagum, Samsad</au><au>Pistola, Dimitra</au><au>Gospodinov, Mitko</au><au>Gospodinova, Еvgeniya</au><au>Tavares, João</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising</atitle><jtitle>Journal of imaging</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>1</volume><issue>1</issue><spage>60</spage><epage>84</epage><pages>60-84</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing motion, body fat, etc. Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation based intersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters. This filter requires an adjustment of the ICI parameters for efficient window size selection. From the wide range of ICI parametric values, finding out the best set of tunes values is itself an optimization problem. The present study proposed a novel technique for parameter optimization of LPA-ICI filter using genetic algorithm (GA) for brain MR images de-noising. The experimental results proved that the proposed method outperforms the LPA-ICI method for de-noising in terms of various performance metrics for different noise variance levels. Obtained results reports that the ICI parameter values depend on the noise variance and the concerned under test image.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jimaging1010060</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7603-6526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2313-433X |
ispartof | Journal of imaging, 2015-12, Vol.1 (1), p.60-84 |
issn | 2313-433X 2313-433X |
language | eng |
recordid | cdi_proquest_journals_2124673495 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Approximation Background noise Brain Brain research Confidence intervals Diagnosis Genetic algorithms Information technology Magnetic resonance imaging Mathematical analysis Medical imaging Methods NMR Noise Noise reduction Nuclear magnetic resonance Optimization Parameter estimation Parameters Performance measurement Polynomials Signal processing |
title | Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Optimization%20for%20Local%20Polynomial%20Approximation%20based%20Intersection%20Confidence%20Interval%20Filter%20Using%20Genetic%20Algorithm:%20An%20Application%20for%20Brain%20MRI%20Image%20De-Noising&rft.jtitle=Journal%20of%20imaging&rft.au=Dey,%20Nilanjan&rft.date=2015-12-01&rft.volume=1&rft.issue=1&rft.spage=60&rft.epage=84&rft.pages=60-84&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging1010060&rft_dat=%3Cproquest_cross%3E2124673495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124673495&rft_id=info:pmid/&rfr_iscdi=true |