Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising

Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing moti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging 2015-12, Vol.1 (1), p.60-84
Hauptverfasser: Dey, Nilanjan, Ashour, Amira, Beagum, Samsad, Pistola, Dimitra, Gospodinov, Mitko, Gospodinova, Еvgeniya, Tavares, João
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 60
container_title Journal of imaging
container_volume 1
creator Dey, Nilanjan
Ashour, Amira
Beagum, Samsad
Pistola, Dimitra
Gospodinov, Mitko
Gospodinova, Еvgeniya
Tavares, João
description Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing motion, body fat, etc. Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation based intersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters. This filter requires an adjustment of the ICI parameters for efficient window size selection. From the wide range of ICI parametric values, finding out the best set of tunes values is itself an optimization problem. The present study proposed a novel technique for parameter optimization of LPA-ICI filter using genetic algorithm (GA) for brain MR images de-noising. The experimental results proved that the proposed method outperforms the LPA-ICI method for de-noising in terms of various performance metrics for different noise variance levels. Obtained results reports that the ICI parameter values depend on the noise variance and the concerned under test image.
doi_str_mv 10.3390/jimaging1010060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124673495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124673495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f5e54585a1772ea65fd73dfa126776dc09e1774972beb68966e3dac9d5c000653</originalsourceid><addsrcrecordid>eNpdUd9LwzAQDqLgmHv2NeBzXdK06epbnW4WphviwLeSpdeZ0SYzqeL8o_wbTTdB8eG44-6777sfCJ1TcslYSoYb1Yi10mtKKCGcHKFeyCgLIsaej__Ep2jg3IYQQtPQW9pDXwthRQMtWDzftqpRn6JVRuPKWDwzUtR4YeqdNo3yYbbdWvPhpfaQlXBQ4lz7XgdynxobXakStIRD_t03TVTdsS-dHw9PQUOrJM7qtbGqfWmucKY73lrJX-FrK5TG9485zv1agG8geDCqIzhDJ5WoHQx-fB8tJ7dP47tgNp_m42wWSMZ4G1QxxFE8igVNkhAEj6syYWUlaMiThJeSpOArUZqEK1jxUco5sFLItIylPw6PWR9dHHj9wq9v4NpiY96s9pJFSMOIJyxKO9TwgJLWOGehKrbWX8fuCkqK7i_Fv7-wb2nGhQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124673495</pqid></control><display><type>article</type><title>Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Dey, Nilanjan ; Ashour, Amira ; Beagum, Samsad ; Pistola, Dimitra ; Gospodinov, Mitko ; Gospodinova, Еvgeniya ; Tavares, João</creator><creatorcontrib>Dey, Nilanjan ; Ashour, Amira ; Beagum, Samsad ; Pistola, Dimitra ; Gospodinov, Mitko ; Gospodinova, Еvgeniya ; Tavares, João</creatorcontrib><description>Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing motion, body fat, etc. Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation based intersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters. This filter requires an adjustment of the ICI parameters for efficient window size selection. From the wide range of ICI parametric values, finding out the best set of tunes values is itself an optimization problem. The present study proposed a novel technique for parameter optimization of LPA-ICI filter using genetic algorithm (GA) for brain MR images de-noising. The experimental results proved that the proposed method outperforms the LPA-ICI method for de-noising in terms of various performance metrics for different noise variance levels. Obtained results reports that the ICI parameter values depend on the noise variance and the concerned under test image.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging1010060</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Background noise ; Brain ; Brain research ; Confidence intervals ; Diagnosis ; Genetic algorithms ; Information technology ; Magnetic resonance imaging ; Mathematical analysis ; Medical imaging ; Methods ; NMR ; Noise ; Noise reduction ; Nuclear magnetic resonance ; Optimization ; Parameter estimation ; Parameters ; Performance measurement ; Polynomials ; Signal processing</subject><ispartof>Journal of imaging, 2015-12, Vol.1 (1), p.60-84</ispartof><rights>2015. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f5e54585a1772ea65fd73dfa126776dc09e1774972beb68966e3dac9d5c000653</citedby><cites>FETCH-LOGICAL-c336t-f5e54585a1772ea65fd73dfa126776dc09e1774972beb68966e3dac9d5c000653</cites><orcidid>0000-0001-7603-6526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Dey, Nilanjan</creatorcontrib><creatorcontrib>Ashour, Amira</creatorcontrib><creatorcontrib>Beagum, Samsad</creatorcontrib><creatorcontrib>Pistola, Dimitra</creatorcontrib><creatorcontrib>Gospodinov, Mitko</creatorcontrib><creatorcontrib>Gospodinova, Еvgeniya</creatorcontrib><creatorcontrib>Tavares, João</creatorcontrib><title>Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising</title><title>Journal of imaging</title><description>Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing motion, body fat, etc. Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation based intersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters. This filter requires an adjustment of the ICI parameters for efficient window size selection. From the wide range of ICI parametric values, finding out the best set of tunes values is itself an optimization problem. The present study proposed a novel technique for parameter optimization of LPA-ICI filter using genetic algorithm (GA) for brain MR images de-noising. The experimental results proved that the proposed method outperforms the LPA-ICI method for de-noising in terms of various performance metrics for different noise variance levels. Obtained results reports that the ICI parameter values depend on the noise variance and the concerned under test image.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Background noise</subject><subject>Brain</subject><subject>Brain research</subject><subject>Confidence intervals</subject><subject>Diagnosis</subject><subject>Genetic algorithms</subject><subject>Information technology</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>NMR</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Performance measurement</subject><subject>Polynomials</subject><subject>Signal processing</subject><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUd9LwzAQDqLgmHv2NeBzXdK06epbnW4WphviwLeSpdeZ0SYzqeL8o_wbTTdB8eG44-6777sfCJ1TcslYSoYb1Yi10mtKKCGcHKFeyCgLIsaej__Ep2jg3IYQQtPQW9pDXwthRQMtWDzftqpRn6JVRuPKWDwzUtR4YeqdNo3yYbbdWvPhpfaQlXBQ4lz7XgdynxobXakStIRD_t03TVTdsS-dHw9PQUOrJM7qtbGqfWmucKY73lrJX-FrK5TG9485zv1agG8geDCqIzhDJ5WoHQx-fB8tJ7dP47tgNp_m42wWSMZ4G1QxxFE8igVNkhAEj6syYWUlaMiThJeSpOArUZqEK1jxUco5sFLItIylPw6PWR9dHHj9wq9v4NpiY96s9pJFSMOIJyxKO9TwgJLWOGehKrbWX8fuCkqK7i_Fv7-wb2nGhQg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Dey, Nilanjan</creator><creator>Ashour, Amira</creator><creator>Beagum, Samsad</creator><creator>Pistola, Dimitra</creator><creator>Gospodinov, Mitko</creator><creator>Gospodinova, Еvgeniya</creator><creator>Tavares, João</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7603-6526</orcidid></search><sort><creationdate>20151201</creationdate><title>Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising</title><author>Dey, Nilanjan ; Ashour, Amira ; Beagum, Samsad ; Pistola, Dimitra ; Gospodinov, Mitko ; Gospodinova, Еvgeniya ; Tavares, João</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f5e54585a1772ea65fd73dfa126776dc09e1774972beb68966e3dac9d5c000653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Background noise</topic><topic>Brain</topic><topic>Brain research</topic><topic>Confidence intervals</topic><topic>Diagnosis</topic><topic>Genetic algorithms</topic><topic>Information technology</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>NMR</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Performance measurement</topic><topic>Polynomials</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, Nilanjan</creatorcontrib><creatorcontrib>Ashour, Amira</creatorcontrib><creatorcontrib>Beagum, Samsad</creatorcontrib><creatorcontrib>Pistola, Dimitra</creatorcontrib><creatorcontrib>Gospodinov, Mitko</creatorcontrib><creatorcontrib>Gospodinova, Еvgeniya</creatorcontrib><creatorcontrib>Tavares, João</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, Nilanjan</au><au>Ashour, Amira</au><au>Beagum, Samsad</au><au>Pistola, Dimitra</au><au>Gospodinov, Mitko</au><au>Gospodinova, Еvgeniya</au><au>Tavares, João</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising</atitle><jtitle>Journal of imaging</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>1</volume><issue>1</issue><spage>60</spage><epage>84</epage><pages>60-84</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>Magnetic resonance imaging (MRI) is extensively exploited for more accurate pathological changes as well as diagnosis. Conversely, MRI suffers from various shortcomings such as ambient noise from the environment, acquisition noise from the equipment, the presence of background tissue, breathing motion, body fat, etc. Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation based intersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters. This filter requires an adjustment of the ICI parameters for efficient window size selection. From the wide range of ICI parametric values, finding out the best set of tunes values is itself an optimization problem. The present study proposed a novel technique for parameter optimization of LPA-ICI filter using genetic algorithm (GA) for brain MR images de-noising. The experimental results proved that the proposed method outperforms the LPA-ICI method for de-noising in terms of various performance metrics for different noise variance levels. Obtained results reports that the ICI parameter values depend on the noise variance and the concerned under test image.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jimaging1010060</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7603-6526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2313-433X
ispartof Journal of imaging, 2015-12, Vol.1 (1), p.60-84
issn 2313-433X
2313-433X
language eng
recordid cdi_proquest_journals_2124673495
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Approximation
Background noise
Brain
Brain research
Confidence intervals
Diagnosis
Genetic algorithms
Information technology
Magnetic resonance imaging
Mathematical analysis
Medical imaging
Methods
NMR
Noise
Noise reduction
Nuclear magnetic resonance
Optimization
Parameter estimation
Parameters
Performance measurement
Polynomials
Signal processing
title Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Optimization%20for%20Local%20Polynomial%20Approximation%20based%20Intersection%20Confidence%20Interval%20Filter%20Using%20Genetic%20Algorithm:%20An%20Application%20for%20Brain%20MRI%20Image%20De-Noising&rft.jtitle=Journal%20of%20imaging&rft.au=Dey,%20Nilanjan&rft.date=2015-12-01&rft.volume=1&rft.issue=1&rft.spage=60&rft.epage=84&rft.pages=60-84&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging1010060&rft_dat=%3Cproquest_cross%3E2124673495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124673495&rft_id=info:pmid/&rfr_iscdi=true