The Majorization Theorems of Single-Cone Trees and Single-Cone Unicyclic Graphs
A single-cone tree (unicyclic graph) is the join of a complete graph K 1 and a tree (unicyclic graph). Suppose π = ( d 1 , d 2 , … , d n ) and π ′ = ( d 1 ′ , d 2 ′ , … , d n ′ ) are two non-increasing degree sequences. We say π is majorizated by π ′ , denoted by π ⊲ π ′ , if and only if π ≠ π ′ , ∑...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2020-01, Vol.43 (1), p.379-388 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 1 |
container_start_page | 379 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 43 |
creator | Luo, Ke Guo, Shu-Guang |
description | A single-cone tree (unicyclic graph) is the join of a complete graph
K
1
and a tree (unicyclic graph). Suppose
π
=
(
d
1
,
d
2
,
…
,
d
n
)
and
π
′
=
(
d
1
′
,
d
2
′
,
…
,
d
n
′
)
are two non-increasing degree sequences. We say
π
is majorizated by
π
′
, denoted by
π
⊲
π
′
, if and only if
π
≠
π
′
,
∑
i
=
1
n
d
i
=
∑
i
=
1
n
d
i
′
, and
∑
i
=
1
j
d
i
≤
∑
i
=
1
j
d
i
′
for all
j
=
1
,
2
,
…
,
n
-
1
. We use
J
π
to denote the class of single-cone trees (unicyclic graphs) with degree sequence
π
. Suppose that
π
and
π
′
are two different non-increasing degree sequences of single-cone trees (unicyclic graphs). Let
ρ
and
ρ
′
be the largest spectral radius of the graphs in
J
π
and
J
π
′
, respectively,
μ
and
μ
′
be the largest signless Laplacian spectral radius of the graphs in
J
π
and
J
π
′
, respectively. In this paper, we prove that if
π
⊲
π
′
, then
ρ
<
ρ
′
and
μ
<
μ
′
. |
doi_str_mv | 10.1007/s40840-018-0690-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124647029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124647029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-7121404c3a251b206fb8cda0bbf82dcdb8ac55f4ad239e20d0f614070484fbfe3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWGp_gLeA5-hkms2mRylahUoPtueQzSbtljapSXuov97ICuLBuQw83vdmeITccrjnAPVDFqAEMOCKgZwA4xdkgFwBEwjykgyAo2SyhuqajHLeQplKokQ-IIvlxtE3s42p-zTHLgZahJjcPtPo6XsX1jvHpjE4ukzOZWpC-0ddhc6e7a6zdJbMYZNvyJU3u-xGP3tIVs9Py-kLmy9mr9PHObMo1ZHVHLkAYccGK96UL32jbGugabzC1raNMraqvDAtjicOoQUvC1CDUMI33o2H5K7PPaT4cXL5qLfxlEI5qZGjkKIGnBQX7102xZyT8_qQur1JZ81Bf1en--p0qU5_V6d5YbBncvGGtUu_yf9DX299b_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124647029</pqid></control><display><type>article</type><title>The Majorization Theorems of Single-Cone Trees and Single-Cone Unicyclic Graphs</title><source>SpringerLink Journals</source><creator>Luo, Ke ; Guo, Shu-Guang</creator><creatorcontrib>Luo, Ke ; Guo, Shu-Guang</creatorcontrib><description>A single-cone tree (unicyclic graph) is the join of a complete graph
K
1
and a tree (unicyclic graph). Suppose
π
=
(
d
1
,
d
2
,
…
,
d
n
)
and
π
′
=
(
d
1
′
,
d
2
′
,
…
,
d
n
′
)
are two non-increasing degree sequences. We say
π
is majorizated by
π
′
, denoted by
π
⊲
π
′
, if and only if
π
≠
π
′
,
∑
i
=
1
n
d
i
=
∑
i
=
1
n
d
i
′
, and
∑
i
=
1
j
d
i
≤
∑
i
=
1
j
d
i
′
for all
j
=
1
,
2
,
…
,
n
-
1
. We use
J
π
to denote the class of single-cone trees (unicyclic graphs) with degree sequence
π
. Suppose that
π
and
π
′
are two different non-increasing degree sequences of single-cone trees (unicyclic graphs). Let
ρ
and
ρ
′
be the largest spectral radius of the graphs in
J
π
and
J
π
′
, respectively,
μ
and
μ
′
be the largest signless Laplacian spectral radius of the graphs in
J
π
and
J
π
′
, respectively. In this paper, we prove that if
π
⊲
π
′
, then
ρ
<
ρ
′
and
μ
<
μ
′
.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-018-0690-1</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Graphs ; Mathematics ; Mathematics and Statistics ; Trees</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2020-01, Vol.43 (1), p.379-388</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-7121404c3a251b206fb8cda0bbf82dcdb8ac55f4ad239e20d0f614070484fbfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-018-0690-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-018-0690-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Luo, Ke</creatorcontrib><creatorcontrib>Guo, Shu-Guang</creatorcontrib><title>The Majorization Theorems of Single-Cone Trees and Single-Cone Unicyclic Graphs</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>A single-cone tree (unicyclic graph) is the join of a complete graph
K
1
and a tree (unicyclic graph). Suppose
π
=
(
d
1
,
d
2
,
…
,
d
n
)
and
π
′
=
(
d
1
′
,
d
2
′
,
…
,
d
n
′
)
are two non-increasing degree sequences. We say
π
is majorizated by
π
′
, denoted by
π
⊲
π
′
, if and only if
π
≠
π
′
,
∑
i
=
1
n
d
i
=
∑
i
=
1
n
d
i
′
, and
∑
i
=
1
j
d
i
≤
∑
i
=
1
j
d
i
′
for all
j
=
1
,
2
,
…
,
n
-
1
. We use
J
π
to denote the class of single-cone trees (unicyclic graphs) with degree sequence
π
. Suppose that
π
and
π
′
are two different non-increasing degree sequences of single-cone trees (unicyclic graphs). Let
ρ
and
ρ
′
be the largest spectral radius of the graphs in
J
π
and
J
π
′
, respectively,
μ
and
μ
′
be the largest signless Laplacian spectral radius of the graphs in
J
π
and
J
π
′
, respectively. In this paper, we prove that if
π
⊲
π
′
, then
ρ
<
ρ
′
and
μ
<
μ
′
.</description><subject>Applications of Mathematics</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Trees</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWGp_gLeA5-hkms2mRylahUoPtueQzSbtljapSXuov97ICuLBuQw83vdmeITccrjnAPVDFqAEMOCKgZwA4xdkgFwBEwjykgyAo2SyhuqajHLeQplKokQ-IIvlxtE3s42p-zTHLgZahJjcPtPo6XsX1jvHpjE4ukzOZWpC-0ddhc6e7a6zdJbMYZNvyJU3u-xGP3tIVs9Py-kLmy9mr9PHObMo1ZHVHLkAYccGK96UL32jbGugabzC1raNMraqvDAtjicOoQUvC1CDUMI33o2H5K7PPaT4cXL5qLfxlEI5qZGjkKIGnBQX7102xZyT8_qQur1JZ81Bf1en--p0qU5_V6d5YbBncvGGtUu_yf9DX299b_k</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Luo, Ke</creator><creator>Guo, Shu-Guang</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200101</creationdate><title>The Majorization Theorems of Single-Cone Trees and Single-Cone Unicyclic Graphs</title><author>Luo, Ke ; Guo, Shu-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-7121404c3a251b206fb8cda0bbf82dcdb8ac55f4ad239e20d0f614070484fbfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Ke</creatorcontrib><creatorcontrib>Guo, Shu-Guang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Ke</au><au>Guo, Shu-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Majorization Theorems of Single-Cone Trees and Single-Cone Unicyclic Graphs</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>43</volume><issue>1</issue><spage>379</spage><epage>388</epage><pages>379-388</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>A single-cone tree (unicyclic graph) is the join of a complete graph
K
1
and a tree (unicyclic graph). Suppose
π
=
(
d
1
,
d
2
,
…
,
d
n
)
and
π
′
=
(
d
1
′
,
d
2
′
,
…
,
d
n
′
)
are two non-increasing degree sequences. We say
π
is majorizated by
π
′
, denoted by
π
⊲
π
′
, if and only if
π
≠
π
′
,
∑
i
=
1
n
d
i
=
∑
i
=
1
n
d
i
′
, and
∑
i
=
1
j
d
i
≤
∑
i
=
1
j
d
i
′
for all
j
=
1
,
2
,
…
,
n
-
1
. We use
J
π
to denote the class of single-cone trees (unicyclic graphs) with degree sequence
π
. Suppose that
π
and
π
′
are two different non-increasing degree sequences of single-cone trees (unicyclic graphs). Let
ρ
and
ρ
′
be the largest spectral radius of the graphs in
J
π
and
J
π
′
, respectively,
μ
and
μ
′
be the largest signless Laplacian spectral radius of the graphs in
J
π
and
J
π
′
, respectively. In this paper, we prove that if
π
⊲
π
′
, then
ρ
<
ρ
′
and
μ
<
μ
′
.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-018-0690-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2020-01, Vol.43 (1), p.379-388 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2124647029 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Graphs Mathematics Mathematics and Statistics Trees |
title | The Majorization Theorems of Single-Cone Trees and Single-Cone Unicyclic Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Majorization%20Theorems%20of%20Single-Cone%20Trees%20and%20Single-Cone%20Unicyclic%20Graphs&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Luo,%20Ke&rft.date=2020-01-01&rft.volume=43&rft.issue=1&rft.spage=379&rft.epage=388&rft.pages=379-388&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-018-0690-1&rft_dat=%3Cproquest_cross%3E2124647029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124647029&rft_id=info:pmid/&rfr_iscdi=true |