A time-dependent discontinuous Galerkin finite element approach in two-dimensional elastodynamic problems based on spherical Hankel element framework

In this paper, a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions is suggested for solving two-dimensional elastodynamic problems. The main idea is to use spherical Hankel shape functions derived from corresponding radial basis functions instead of classical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2018-12, Vol.229 (12), p.4977-4994
Hauptverfasser: Izadpanah, E., Shojaee, S., Hamzehei-Javaran, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4994
container_issue 12
container_start_page 4977
container_title Acta mechanica
container_volume 229
creator Izadpanah, E.
Shojaee, S.
Hamzehei-Javaran, S.
description In this paper, a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions is suggested for solving two-dimensional elastodynamic problems. The main idea is to use spherical Hankel shape functions derived from corresponding radial basis functions instead of classical Lagrange shape functions. Among the advantages of the proposed interpolation, containing the first and second kind of Bessel functions in complex space as well as the polynomial ones can be pointed out, while the classic Lagrange interpolation is only able to contain polynomial functions. The validity and accuracy of the present method are fully demonstrated using several numerical examples. For this purpose, five numerical examples are considered, and the results obtained from the proposed method (Hankel-based TD-FEM) and the Lagrange-based TD-FEM are compared with the exact analytical solutions. The results show that the use of Hankel functions in TD-FEM leads to more accurate and stable solutions rather than those obtained from the classic TD-FEM.
doi_str_mv 10.1007/s00707-018-2287-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2124645990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A564218825</galeid><sourcerecordid>A564218825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-336fdd1a2829125a2f2e11470b66c173504e6fdb1b27b2401dbf24e65e0294343</originalsourceid><addsrcrecordid>eNp1kcFqHSEUhqW00Ns0D5Cd0LWpOjrOLC-hTQqBbtq1OOMxMXdGpzqXkLxH3zfnMiVZFUHx-P0_5_gTciH4peDcfK24ccO46JiUnWHP78hOtKJnbd-Y92THORdM94Z_JJ9qfcCbNErsyN89XeMMzMMCyUNaqY91zGmN6ZiPlV67CcohJhpiiitQmGA-UW5ZSnbjPcWn9TEzjyapxpzchIyra_ZPyc1xpMgNKKp0cBU8zYnW5R5KHJG8cekA06tpKG6Gx1wOn8mH4KYK5__OM_L7-7dfVzfs9uf1j6v9LRsbrVfWNG3wXjjZyV5I7WSQIIQyfGjbUZhGcwVIDGKQZpCKCz8EiSUNXPaqUc0Z-bL5YpN_jlBX-5CPBWeoVgqpWqX7niN1uVF3-Bk2ppDX4kZcHnDAnCBErO91q6ToOqlRIDbBWHKtBYJdSpxdebKC21NcdovLYlz2FJd9Ro3cNBXZdAflrZX_i14AxNCbGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124645990</pqid></control><display><type>article</type><title>A time-dependent discontinuous Galerkin finite element approach in two-dimensional elastodynamic problems based on spherical Hankel element framework</title><source>SpringerLink Journals</source><creator>Izadpanah, E. ; Shojaee, S. ; Hamzehei-Javaran, S.</creator><creatorcontrib>Izadpanah, E. ; Shojaee, S. ; Hamzehei-Javaran, S.</creatorcontrib><description>In this paper, a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions is suggested for solving two-dimensional elastodynamic problems. The main idea is to use spherical Hankel shape functions derived from corresponding radial basis functions instead of classical Lagrange shape functions. Among the advantages of the proposed interpolation, containing the first and second kind of Bessel functions in complex space as well as the polynomial ones can be pointed out, while the classic Lagrange interpolation is only able to contain polynomial functions. The validity and accuracy of the present method are fully demonstrated using several numerical examples. For this purpose, five numerical examples are considered, and the results obtained from the proposed method (Hankel-based TD-FEM) and the Lagrange-based TD-FEM are compared with the exact analytical solutions. The results show that the use of Hankel functions in TD-FEM leads to more accurate and stable solutions rather than those obtained from the classic TD-FEM.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-018-2287-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Basis functions ; Bessel functions ; Classical and Continuum Physics ; Control ; Dynamical Systems ; Elastodynamics ; Engineering ; Engineering Thermodynamics ; Finite element method ; Galerkin method ; Hankel functions ; Heat and Mass Transfer ; Interpolation ; Original Paper ; Polynomials ; Radial basis function ; Shape functions ; Solid Mechanics ; Theoretical and Applied Mechanics ; Time dependence ; Vibration</subject><ispartof>Acta mechanica, 2018-12, Vol.229 (12), p.4977-4994</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-336fdd1a2829125a2f2e11470b66c173504e6fdb1b27b2401dbf24e65e0294343</citedby><cites>FETCH-LOGICAL-c355t-336fdd1a2829125a2f2e11470b66c173504e6fdb1b27b2401dbf24e65e0294343</cites><orcidid>0000-0003-0952-9085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-018-2287-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-018-2287-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Izadpanah, E.</creatorcontrib><creatorcontrib>Shojaee, S.</creatorcontrib><creatorcontrib>Hamzehei-Javaran, S.</creatorcontrib><title>A time-dependent discontinuous Galerkin finite element approach in two-dimensional elastodynamic problems based on spherical Hankel element framework</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this paper, a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions is suggested for solving two-dimensional elastodynamic problems. The main idea is to use spherical Hankel shape functions derived from corresponding radial basis functions instead of classical Lagrange shape functions. Among the advantages of the proposed interpolation, containing the first and second kind of Bessel functions in complex space as well as the polynomial ones can be pointed out, while the classic Lagrange interpolation is only able to contain polynomial functions. The validity and accuracy of the present method are fully demonstrated using several numerical examples. For this purpose, five numerical examples are considered, and the results obtained from the proposed method (Hankel-based TD-FEM) and the Lagrange-based TD-FEM are compared with the exact analytical solutions. The results show that the use of Hankel functions in TD-FEM leads to more accurate and stable solutions rather than those obtained from the classic TD-FEM.</description><subject>Basis functions</subject><subject>Bessel functions</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Elastodynamics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Hankel functions</subject><subject>Heat and Mass Transfer</subject><subject>Interpolation</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Radial basis function</subject><subject>Shape functions</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time dependence</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kcFqHSEUhqW00Ns0D5Cd0LWpOjrOLC-hTQqBbtq1OOMxMXdGpzqXkLxH3zfnMiVZFUHx-P0_5_gTciH4peDcfK24ccO46JiUnWHP78hOtKJnbd-Y92THORdM94Z_JJ9qfcCbNErsyN89XeMMzMMCyUNaqY91zGmN6ZiPlV67CcohJhpiiitQmGA-UW5ZSnbjPcWn9TEzjyapxpzchIyra_ZPyc1xpMgNKKp0cBU8zYnW5R5KHJG8cekA06tpKG6Gx1wOn8mH4KYK5__OM_L7-7dfVzfs9uf1j6v9LRsbrVfWNG3wXjjZyV5I7WSQIIQyfGjbUZhGcwVIDGKQZpCKCz8EiSUNXPaqUc0Z-bL5YpN_jlBX-5CPBWeoVgqpWqX7niN1uVF3-Bk2ppDX4kZcHnDAnCBErO91q6ToOqlRIDbBWHKtBYJdSpxdebKC21NcdovLYlz2FJd9Ro3cNBXZdAflrZX_i14AxNCbGA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Izadpanah, E.</creator><creator>Shojaee, S.</creator><creator>Hamzehei-Javaran, S.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0952-9085</orcidid></search><sort><creationdate>20181201</creationdate><title>A time-dependent discontinuous Galerkin finite element approach in two-dimensional elastodynamic problems based on spherical Hankel element framework</title><author>Izadpanah, E. ; Shojaee, S. ; Hamzehei-Javaran, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-336fdd1a2829125a2f2e11470b66c173504e6fdb1b27b2401dbf24e65e0294343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Bessel functions</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Elastodynamics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Hankel functions</topic><topic>Heat and Mass Transfer</topic><topic>Interpolation</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Radial basis function</topic><topic>Shape functions</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time dependence</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izadpanah, E.</creatorcontrib><creatorcontrib>Shojaee, S.</creatorcontrib><creatorcontrib>Hamzehei-Javaran, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izadpanah, E.</au><au>Shojaee, S.</au><au>Hamzehei-Javaran, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time-dependent discontinuous Galerkin finite element approach in two-dimensional elastodynamic problems based on spherical Hankel element framework</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>229</volume><issue>12</issue><spage>4977</spage><epage>4994</epage><pages>4977-4994</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In this paper, a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions is suggested for solving two-dimensional elastodynamic problems. The main idea is to use spherical Hankel shape functions derived from corresponding radial basis functions instead of classical Lagrange shape functions. Among the advantages of the proposed interpolation, containing the first and second kind of Bessel functions in complex space as well as the polynomial ones can be pointed out, while the classic Lagrange interpolation is only able to contain polynomial functions. The validity and accuracy of the present method are fully demonstrated using several numerical examples. For this purpose, five numerical examples are considered, and the results obtained from the proposed method (Hankel-based TD-FEM) and the Lagrange-based TD-FEM are compared with the exact analytical solutions. The results show that the use of Hankel functions in TD-FEM leads to more accurate and stable solutions rather than those obtained from the classic TD-FEM.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-018-2287-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0952-9085</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2018-12, Vol.229 (12), p.4977-4994
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2124645990
source SpringerLink Journals
subjects Basis functions
Bessel functions
Classical and Continuum Physics
Control
Dynamical Systems
Elastodynamics
Engineering
Engineering Thermodynamics
Finite element method
Galerkin method
Hankel functions
Heat and Mass Transfer
Interpolation
Original Paper
Polynomials
Radial basis function
Shape functions
Solid Mechanics
Theoretical and Applied Mechanics
Time dependence
Vibration
title A time-dependent discontinuous Galerkin finite element approach in two-dimensional elastodynamic problems based on spherical Hankel element framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time-dependent%20discontinuous%20Galerkin%20finite%20element%20approach%20in%20two-dimensional%20elastodynamic%20problems%20based%20on%20spherical%20Hankel%20element%20framework&rft.jtitle=Acta%20mechanica&rft.au=Izadpanah,%20E.&rft.date=2018-12-01&rft.volume=229&rft.issue=12&rft.spage=4977&rft.epage=4994&rft.pages=4977-4994&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-018-2287-z&rft_dat=%3Cgale_proqu%3EA564218825%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124645990&rft_id=info:pmid/&rft_galeid=A564218825&rfr_iscdi=true