Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics
The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These result...
Gespeichert in:
Veröffentlicht in: | Fluids (Basel) 2016-06, Vol.1 (2), p.18 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 18 |
container_title | Fluids (Basel) |
container_volume | 1 |
creator | Vadasz, Peter |
description | The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These results complement the Madelung’s (Zeitschrift für Physik 40 (3–4), pp. 322–326, 1926–1927) derivations that show how Schrödinger’s equation in quantum mechanics can be converted into the Euler equations for irrotational compressible flow. The theoretical results presented here join the classical Madelung paper to suggest the possibility that quantum effects at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the “quantum particle” is under current investigation. |
doi_str_mv | 10.3390/fluids1020018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124629179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124629179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-2fb5aaff29d48ce5a1ade329e6aa23f6f6e3ce7121532d3ac87858f95d78051d3</originalsourceid><addsrcrecordid>eNpVkE1KQzEUhYMoWGqHzgOOn-aneT9DKa0KVdHq-JEmNza1TdokT3DmHtyLG3AnrsTXVkRH9w6-7xw4CB1Tcsp5Rc7MorE6UsIIoeUe6jBOaSYEo_t__kPUi3FONojgtCg6qLkHpyFY94TTDPCNfLEQvt7eJ8k_Q8TDdSOT9S5i4wOWeOCXqwAx2ukC8GhTia1LfutO1Cx8fug2CsKvuPXuGulSs8TXoGbSWRWP0IGRiwi9n9tFj6Phw-AyG99eXA3Ox5nipJ8yZqZCSmNYpfulAiGp1MBZBbmUjJvc5MAVFJRRwZnmUpVFKUpTCV2URFDNu-hkl7sKft1ATPXcN8G1lTWjrJ-zihZVS2U7SgUfYwBTr4JdyvBaU1Jvxq3_jcu_ASlwcSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124629179</pqid></control><display><type>article</type><title>Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vadasz, Peter</creator><creatorcontrib>Vadasz, Peter</creatorcontrib><description>The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These results complement the Madelung’s (Zeitschrift für Physik 40 (3–4), pp. 322–326, 1926–1927) derivations that show how Schrödinger’s equation in quantum mechanics can be converted into the Euler equations for irrotational compressible flow. The theoretical results presented here join the classical Madelung paper to suggest the possibility that quantum effects at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the “quantum particle” is under current investigation.</description><identifier>ISSN: 2311-5521</identifier><identifier>EISSN: 2311-5521</identifier><identifier>DOI: 10.3390/fluids1020018</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Compressible flow ; Compressible fluids ; Einstein, Albert (1879-1955) ; Euler-Lagrange equation ; Fluid dynamics ; Fluid flow ; Fluids ; Investigations ; Mathematical analysis ; Momentum transfer ; Navier-Stokes equations ; Partial differential equations ; Quantum mechanics ; Quantum physics ; Quantum theory ; Schrodinger equation ; Wave propagation</subject><ispartof>Fluids (Basel), 2016-06, Vol.1 (2), p.18</ispartof><rights>2016. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-2fb5aaff29d48ce5a1ade329e6aa23f6f6e3ce7121532d3ac87858f95d78051d3</citedby><cites>FETCH-LOGICAL-c304t-2fb5aaff29d48ce5a1ade329e6aa23f6f6e3ce7121532d3ac87858f95d78051d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Vadasz, Peter</creatorcontrib><title>Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics</title><title>Fluids (Basel)</title><description>The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These results complement the Madelung’s (Zeitschrift für Physik 40 (3–4), pp. 322–326, 1926–1927) derivations that show how Schrödinger’s equation in quantum mechanics can be converted into the Euler equations for irrotational compressible flow. The theoretical results presented here join the classical Madelung paper to suggest the possibility that quantum effects at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the “quantum particle” is under current investigation.</description><subject>Compressible flow</subject><subject>Compressible fluids</subject><subject>Einstein, Albert (1879-1955)</subject><subject>Euler-Lagrange equation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Momentum transfer</subject><subject>Navier-Stokes equations</subject><subject>Partial differential equations</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>Schrodinger equation</subject><subject>Wave propagation</subject><issn>2311-5521</issn><issn>2311-5521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkE1KQzEUhYMoWGqHzgOOn-aneT9DKa0KVdHq-JEmNza1TdokT3DmHtyLG3AnrsTXVkRH9w6-7xw4CB1Tcsp5Rc7MorE6UsIIoeUe6jBOaSYEo_t__kPUi3FONojgtCg6qLkHpyFY94TTDPCNfLEQvt7eJ8k_Q8TDdSOT9S5i4wOWeOCXqwAx2ukC8GhTia1LfutO1Cx8fug2CsKvuPXuGulSs8TXoGbSWRWP0IGRiwi9n9tFj6Phw-AyG99eXA3Ox5nipJ8yZqZCSmNYpfulAiGp1MBZBbmUjJvc5MAVFJRRwZnmUpVFKUpTCV2URFDNu-hkl7sKft1ATPXcN8G1lTWjrJ-zihZVS2U7SgUfYwBTr4JdyvBaU1Jvxq3_jcu_ASlwcSQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Vadasz, Peter</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160601</creationdate><title>Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics</title><author>Vadasz, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-2fb5aaff29d48ce5a1ade329e6aa23f6f6e3ce7121532d3ac87858f95d78051d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compressible flow</topic><topic>Compressible fluids</topic><topic>Einstein, Albert (1879-1955)</topic><topic>Euler-Lagrange equation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Momentum transfer</topic><topic>Navier-Stokes equations</topic><topic>Partial differential equations</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>Schrodinger equation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vadasz, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Fluids (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vadasz, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics</atitle><jtitle>Fluids (Basel)</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>1</volume><issue>2</issue><spage>18</spage><pages>18-</pages><issn>2311-5521</issn><eissn>2311-5521</eissn><abstract>The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These results complement the Madelung’s (Zeitschrift für Physik 40 (3–4), pp. 322–326, 1926–1927) derivations that show how Schrödinger’s equation in quantum mechanics can be converted into the Euler equations for irrotational compressible flow. The theoretical results presented here join the classical Madelung paper to suggest the possibility that quantum effects at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the “quantum particle” is under current investigation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fluids1020018</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-5521 |
ispartof | Fluids (Basel), 2016-06, Vol.1 (2), p.18 |
issn | 2311-5521 2311-5521 |
language | eng |
recordid | cdi_proquest_journals_2124629179 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Compressible flow Compressible fluids Einstein, Albert (1879-1955) Euler-Lagrange equation Fluid dynamics Fluid flow Fluids Investigations Mathematical analysis Momentum transfer Navier-Stokes equations Partial differential equations Quantum mechanics Quantum physics Quantum theory Schrodinger equation Wave propagation |
title | Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rendering%20the%20Navier%E2%80%93Stokes%20Equations%20for%20a%20Compressible%20Fluid%20into%20the%20Schr%C3%B6dinger%20Equation%20for%20Quantum%20Mechanics&rft.jtitle=Fluids%20(Basel)&rft.au=Vadasz,%20Peter&rft.date=2016-06-01&rft.volume=1&rft.issue=2&rft.spage=18&rft.pages=18-&rft.issn=2311-5521&rft.eissn=2311-5521&rft_id=info:doi/10.3390/fluids1020018&rft_dat=%3Cproquest_cross%3E2124629179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124629179&rft_id=info:pmid/&rfr_iscdi=true |