Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics

The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluids (Basel) 2016-06, Vol.1 (2), p.18
1. Verfasser: Vadasz, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 18
container_title Fluids (Basel)
container_volume 1
creator Vadasz, Peter
description The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These results complement the Madelung’s (Zeitschrift für Physik 40 (3–4), pp. 322–326, 1926–1927) derivations that show how Schrödinger’s equation in quantum mechanics can be converted into the Euler equations for irrotational compressible flow. The theoretical results presented here join the classical Madelung paper to suggest the possibility that quantum effects at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the “quantum particle” is under current investigation.
doi_str_mv 10.3390/fluids1020018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124629179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124629179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-2fb5aaff29d48ce5a1ade329e6aa23f6f6e3ce7121532d3ac87858f95d78051d3</originalsourceid><addsrcrecordid>eNpVkE1KQzEUhYMoWGqHzgOOn-aneT9DKa0KVdHq-JEmNza1TdokT3DmHtyLG3AnrsTXVkRH9w6-7xw4CB1Tcsp5Rc7MorE6UsIIoeUe6jBOaSYEo_t__kPUi3FONojgtCg6qLkHpyFY94TTDPCNfLEQvt7eJ8k_Q8TDdSOT9S5i4wOWeOCXqwAx2ukC8GhTia1LfutO1Cx8fug2CsKvuPXuGulSs8TXoGbSWRWP0IGRiwi9n9tFj6Phw-AyG99eXA3Ox5nipJ8yZqZCSmNYpfulAiGp1MBZBbmUjJvc5MAVFJRRwZnmUpVFKUpTCV2URFDNu-hkl7sKft1ATPXcN8G1lTWjrJ-zihZVS2U7SgUfYwBTr4JdyvBaU1Jvxq3_jcu_ASlwcSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124629179</pqid></control><display><type>article</type><title>Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vadasz, Peter</creator><creatorcontrib>Vadasz, Peter</creatorcontrib><description>The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These results complement the Madelung’s (Zeitschrift für Physik 40 (3–4), pp. 322–326, 1926–1927) derivations that show how Schrödinger’s equation in quantum mechanics can be converted into the Euler equations for irrotational compressible flow. The theoretical results presented here join the classical Madelung paper to suggest the possibility that quantum effects at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the “quantum particle” is under current investigation.</description><identifier>ISSN: 2311-5521</identifier><identifier>EISSN: 2311-5521</identifier><identifier>DOI: 10.3390/fluids1020018</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Compressible flow ; Compressible fluids ; Einstein, Albert (1879-1955) ; Euler-Lagrange equation ; Fluid dynamics ; Fluid flow ; Fluids ; Investigations ; Mathematical analysis ; Momentum transfer ; Navier-Stokes equations ; Partial differential equations ; Quantum mechanics ; Quantum physics ; Quantum theory ; Schrodinger equation ; Wave propagation</subject><ispartof>Fluids (Basel), 2016-06, Vol.1 (2), p.18</ispartof><rights>2016. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-2fb5aaff29d48ce5a1ade329e6aa23f6f6e3ce7121532d3ac87858f95d78051d3</citedby><cites>FETCH-LOGICAL-c304t-2fb5aaff29d48ce5a1ade329e6aa23f6f6e3ce7121532d3ac87858f95d78051d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Vadasz, Peter</creatorcontrib><title>Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics</title><title>Fluids (Basel)</title><description>The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These results complement the Madelung’s (Zeitschrift für Physik 40 (3–4), pp. 322–326, 1926–1927) derivations that show how Schrödinger’s equation in quantum mechanics can be converted into the Euler equations for irrotational compressible flow. The theoretical results presented here join the classical Madelung paper to suggest the possibility that quantum effects at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the “quantum particle” is under current investigation.</description><subject>Compressible flow</subject><subject>Compressible fluids</subject><subject>Einstein, Albert (1879-1955)</subject><subject>Euler-Lagrange equation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Momentum transfer</subject><subject>Navier-Stokes equations</subject><subject>Partial differential equations</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>Schrodinger equation</subject><subject>Wave propagation</subject><issn>2311-5521</issn><issn>2311-5521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkE1KQzEUhYMoWGqHzgOOn-aneT9DKa0KVdHq-JEmNza1TdokT3DmHtyLG3AnrsTXVkRH9w6-7xw4CB1Tcsp5Rc7MorE6UsIIoeUe6jBOaSYEo_t__kPUi3FONojgtCg6qLkHpyFY94TTDPCNfLEQvt7eJ8k_Q8TDdSOT9S5i4wOWeOCXqwAx2ukC8GhTia1LfutO1Cx8fug2CsKvuPXuGulSs8TXoGbSWRWP0IGRiwi9n9tFj6Phw-AyG99eXA3Ox5nipJ8yZqZCSmNYpfulAiGp1MBZBbmUjJvc5MAVFJRRwZnmUpVFKUpTCV2URFDNu-hkl7sKft1ATPXcN8G1lTWjrJ-zihZVS2U7SgUfYwBTr4JdyvBaU1Jvxq3_jcu_ASlwcSQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Vadasz, Peter</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160601</creationdate><title>Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics</title><author>Vadasz, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-2fb5aaff29d48ce5a1ade329e6aa23f6f6e3ce7121532d3ac87858f95d78051d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compressible flow</topic><topic>Compressible fluids</topic><topic>Einstein, Albert (1879-1955)</topic><topic>Euler-Lagrange equation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Momentum transfer</topic><topic>Navier-Stokes equations</topic><topic>Partial differential equations</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>Schrodinger equation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vadasz, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Fluids (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vadasz, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics</atitle><jtitle>Fluids (Basel)</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>1</volume><issue>2</issue><spage>18</spage><pages>18-</pages><issn>2311-5521</issn><eissn>2311-5521</eissn><abstract>The mass and momentum transfer phenomena in a compressible fluid represented by the Navier–Stokes equations are shown to convert into the Schrödinger equation for quantum mechanics. The complete Navier–Stokes equations render into an extended generalized version of Schrödinger equation. These results complement the Madelung’s (Zeitschrift für Physik 40 (3–4), pp. 322–326, 1926–1927) derivations that show how Schrödinger’s equation in quantum mechanics can be converted into the Euler equations for irrotational compressible flow. The theoretical results presented here join the classical Madelung paper to suggest the possibility that quantum effects at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the “quantum particle” is under current investigation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fluids1020018</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-5521
ispartof Fluids (Basel), 2016-06, Vol.1 (2), p.18
issn 2311-5521
2311-5521
language eng
recordid cdi_proquest_journals_2124629179
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Compressible flow
Compressible fluids
Einstein, Albert (1879-1955)
Euler-Lagrange equation
Fluid dynamics
Fluid flow
Fluids
Investigations
Mathematical analysis
Momentum transfer
Navier-Stokes equations
Partial differential equations
Quantum mechanics
Quantum physics
Quantum theory
Schrodinger equation
Wave propagation
title Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rendering%20the%20Navier%E2%80%93Stokes%20Equations%20for%20a%20Compressible%20Fluid%20into%20the%20Schr%C3%B6dinger%20Equation%20for%20Quantum%20Mechanics&rft.jtitle=Fluids%20(Basel)&rft.au=Vadasz,%20Peter&rft.date=2016-06-01&rft.volume=1&rft.issue=2&rft.spage=18&rft.pages=18-&rft.issn=2311-5521&rft.eissn=2311-5521&rft_id=info:doi/10.3390/fluids1020018&rft_dat=%3Cproquest_cross%3E2124629179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124629179&rft_id=info:pmid/&rfr_iscdi=true