A dual porosity model of high-pressure gas flow for geoenergy applications
This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixt...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2018-06, Vol.55 (6), p.839-851 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 851 |
---|---|
container_issue | 6 |
container_start_page | 839 |
container_title | Canadian geotechnical journal |
container_volume | 55 |
creator | Hosking, L.J Thomas, H.R Sedighi, M |
description | This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration. |
doi_str_mv | 10.1139/cgj-2016-0532 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2124532012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A542801419</galeid><sourcerecordid>A542801419</sourcerecordid><originalsourceid>FETCH-LOGICAL-a568t-40ce70873d0699a2ef37f131eb4515cd3162a6dfa66932eb13064e125f3d56d53</originalsourceid><addsrcrecordid>eNqVkkFr3DAQhUVIoZu0x95FeurB6Yxka9fHJTRNQmihbc5CkUdeLV7LkWyS_ffVkkAbMJSig8TwzQxP7zH2AeEcUdafbbstBKAqoJLiiC1QwKpQgHDMFgD5LdWyfMtOUtoCYFkKsWA3a95MpuNDiCH5cc93oaGOB8c3vt0UQ6SUpki8NYm7LjxyFyJvKVBPsd1zMwydt2b0oU_v2BtnukTvX-5Tdnf55dfFVXH7_ev1xfq2MJVajUUJlpawWsoGVF0bQU4uHUqk-7LCyjYSlTCqcUapWgq6RwmqJBSVk02lmkqeso_Pc4cYHiZKo96GKfZ5pRYoyqwdUPyhWtOR9r0LYzR255PV66oUq_wBWGeqmKHagzrThZ6cz-VX_NkMbwf_oP-GzmegfBraeTs79dOrhsyM9DS2ZkpJX__88R_st1l1NpubIjk9RL8zca8R9CEyOkdGHyKjD5HJPDzzfbTZeDLRbv7R8htDv72v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124532012</pqid></control><display><type>article</type><title>A dual porosity model of high-pressure gas flow for geoenergy applications</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Hosking, L.J ; Thomas, H.R ; Sedighi, M</creator><creatorcontrib>Hosking, L.J ; Thomas, H.R ; Sedighi, M</creatorcontrib><description>This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2016-0532</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>Carbon sequestration ; Chemical reactions ; Continuums ; Descriptions ; double porosité ; dual porosity ; Engineering models ; Exchanging ; Finite difference method ; Finite element method ; flux du gaz ; Fractures ; Gas flow ; Gas mixtures ; Gas transport ; geoenergy ; Geology ; géo énergie ; haute pression ; High pressure ; Mathematical models ; Modelling ; Modules ; Multiphase ; Numerical models ; Organic chemistry ; Porosity ; Porous media ; Pressure ; Storage ; séquestration du carbone ; Transport ; Transport processes</subject><ispartof>Canadian geotechnical journal, 2018-06, Vol.55 (6), p.839-851</ispartof><rights>COPYRIGHT 2018 NRC Research Press</rights><rights>2018 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a568t-40ce70873d0699a2ef37f131eb4515cd3162a6dfa66932eb13064e125f3d56d53</citedby><cites>FETCH-LOGICAL-a568t-40ce70873d0699a2ef37f131eb4515cd3162a6dfa66932eb13064e125f3d56d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2016-0532$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2016-0532$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,776,780,2919,27901,27902,64401,64979</link.rule.ids></links><search><creatorcontrib>Hosking, L.J</creatorcontrib><creatorcontrib>Thomas, H.R</creatorcontrib><creatorcontrib>Sedighi, M</creatorcontrib><title>A dual porosity model of high-pressure gas flow for geoenergy applications</title><title>Canadian geotechnical journal</title><description>This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration.</description><subject>Carbon sequestration</subject><subject>Chemical reactions</subject><subject>Continuums</subject><subject>Descriptions</subject><subject>double porosité</subject><subject>dual porosity</subject><subject>Engineering models</subject><subject>Exchanging</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>flux du gaz</subject><subject>Fractures</subject><subject>Gas flow</subject><subject>Gas mixtures</subject><subject>Gas transport</subject><subject>geoenergy</subject><subject>Geology</subject><subject>géo énergie</subject><subject>haute pression</subject><subject>High pressure</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Modules</subject><subject>Multiphase</subject><subject>Numerical models</subject><subject>Organic chemistry</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Pressure</subject><subject>Storage</subject><subject>séquestration du carbone</subject><subject>Transport</subject><subject>Transport processes</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVkkFr3DAQhUVIoZu0x95FeurB6Yxka9fHJTRNQmihbc5CkUdeLV7LkWyS_ffVkkAbMJSig8TwzQxP7zH2AeEcUdafbbstBKAqoJLiiC1QwKpQgHDMFgD5LdWyfMtOUtoCYFkKsWA3a95MpuNDiCH5cc93oaGOB8c3vt0UQ6SUpki8NYm7LjxyFyJvKVBPsd1zMwydt2b0oU_v2BtnukTvX-5Tdnf55dfFVXH7_ev1xfq2MJVajUUJlpawWsoGVF0bQU4uHUqk-7LCyjYSlTCqcUapWgq6RwmqJBSVk02lmkqeso_Pc4cYHiZKo96GKfZ5pRYoyqwdUPyhWtOR9r0LYzR255PV66oUq_wBWGeqmKHagzrThZ6cz-VX_NkMbwf_oP-GzmegfBraeTs79dOrhsyM9DS2ZkpJX__88R_st1l1NpubIjk9RL8zca8R9CEyOkdGHyKjD5HJPDzzfbTZeDLRbv7R8htDv72v</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hosking, L.J</creator><creator>Thomas, H.R</creator><creator>Sedighi, M</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20180601</creationdate><title>A dual porosity model of high-pressure gas flow for geoenergy applications</title><author>Hosking, L.J ; Thomas, H.R ; Sedighi, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a568t-40ce70873d0699a2ef37f131eb4515cd3162a6dfa66932eb13064e125f3d56d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon sequestration</topic><topic>Chemical reactions</topic><topic>Continuums</topic><topic>Descriptions</topic><topic>double porosité</topic><topic>dual porosity</topic><topic>Engineering models</topic><topic>Exchanging</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>flux du gaz</topic><topic>Fractures</topic><topic>Gas flow</topic><topic>Gas mixtures</topic><topic>Gas transport</topic><topic>geoenergy</topic><topic>Geology</topic><topic>géo énergie</topic><topic>haute pression</topic><topic>High pressure</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Modules</topic><topic>Multiphase</topic><topic>Numerical models</topic><topic>Organic chemistry</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Pressure</topic><topic>Storage</topic><topic>séquestration du carbone</topic><topic>Transport</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosking, L.J</creatorcontrib><creatorcontrib>Thomas, H.R</creatorcontrib><creatorcontrib>Sedighi, M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosking, L.J</au><au>Thomas, H.R</au><au>Sedighi, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dual porosity model of high-pressure gas flow for geoenergy applications</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>55</volume><issue>6</issue><spage>839</spage><epage>851</epage><pages>839-851</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2016-0532</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2018-06, Vol.55 (6), p.839-851 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_proquest_journals_2124532012 |
source | NRC Research Press; Alma/SFX Local Collection |
subjects | Carbon sequestration Chemical reactions Continuums Descriptions double porosité dual porosity Engineering models Exchanging Finite difference method Finite element method flux du gaz Fractures Gas flow Gas mixtures Gas transport geoenergy Geology géo énergie haute pression High pressure Mathematical models Modelling Modules Multiphase Numerical models Organic chemistry Porosity Porous media Pressure Storage séquestration du carbone Transport Transport processes |
title | A dual porosity model of high-pressure gas flow for geoenergy applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dual%20porosity%20model%20of%20high-pressure%20gas%20flow%20for%20geoenergy%20applications&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Hosking,%20L.J&rft.date=2018-06-01&rft.volume=55&rft.issue=6&rft.spage=839&rft.epage=851&rft.pages=839-851&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2016-0532&rft_dat=%3Cgale_proqu%3EA542801419%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124532012&rft_id=info:pmid/&rft_galeid=A542801419&rfr_iscdi=true |