A dual porosity model of high-pressure gas flow for geoenergy applications

This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2018-06, Vol.55 (6), p.839-851
Hauptverfasser: Hosking, L.J, Thomas, H.R, Sedighi, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue 6
container_start_page 839
container_title Canadian geotechnical journal
container_volume 55
creator Hosking, L.J
Thomas, H.R
Sedighi, M
description This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration.
doi_str_mv 10.1139/cgj-2016-0532
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2124532012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A542801419</galeid><sourcerecordid>A542801419</sourcerecordid><originalsourceid>FETCH-LOGICAL-a568t-40ce70873d0699a2ef37f131eb4515cd3162a6dfa66932eb13064e125f3d56d53</originalsourceid><addsrcrecordid>eNqVkkFr3DAQhUVIoZu0x95FeurB6Yxka9fHJTRNQmihbc5CkUdeLV7LkWyS_ffVkkAbMJSig8TwzQxP7zH2AeEcUdafbbstBKAqoJLiiC1QwKpQgHDMFgD5LdWyfMtOUtoCYFkKsWA3a95MpuNDiCH5cc93oaGOB8c3vt0UQ6SUpki8NYm7LjxyFyJvKVBPsd1zMwydt2b0oU_v2BtnukTvX-5Tdnf55dfFVXH7_ev1xfq2MJVajUUJlpawWsoGVF0bQU4uHUqk-7LCyjYSlTCqcUapWgq6RwmqJBSVk02lmkqeso_Pc4cYHiZKo96GKfZ5pRYoyqwdUPyhWtOR9r0LYzR255PV66oUq_wBWGeqmKHagzrThZ6cz-VX_NkMbwf_oP-GzmegfBraeTs79dOrhsyM9DS2ZkpJX__88R_st1l1NpubIjk9RL8zca8R9CEyOkdGHyKjD5HJPDzzfbTZeDLRbv7R8htDv72v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124532012</pqid></control><display><type>article</type><title>A dual porosity model of high-pressure gas flow for geoenergy applications</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Hosking, L.J ; Thomas, H.R ; Sedighi, M</creator><creatorcontrib>Hosking, L.J ; Thomas, H.R ; Sedighi, M</creatorcontrib><description>This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2016-0532</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>Carbon sequestration ; Chemical reactions ; Continuums ; Descriptions ; double porosité ; dual porosity ; Engineering models ; Exchanging ; Finite difference method ; Finite element method ; flux du gaz ; Fractures ; Gas flow ; Gas mixtures ; Gas transport ; geoenergy ; Geology ; géo énergie ; haute pression ; High pressure ; Mathematical models ; Modelling ; Modules ; Multiphase ; Numerical models ; Organic chemistry ; Porosity ; Porous media ; Pressure ; Storage ; séquestration du carbone ; Transport ; Transport processes</subject><ispartof>Canadian geotechnical journal, 2018-06, Vol.55 (6), p.839-851</ispartof><rights>COPYRIGHT 2018 NRC Research Press</rights><rights>2018 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a568t-40ce70873d0699a2ef37f131eb4515cd3162a6dfa66932eb13064e125f3d56d53</citedby><cites>FETCH-LOGICAL-a568t-40ce70873d0699a2ef37f131eb4515cd3162a6dfa66932eb13064e125f3d56d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2016-0532$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2016-0532$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,776,780,2919,27901,27902,64401,64979</link.rule.ids></links><search><creatorcontrib>Hosking, L.J</creatorcontrib><creatorcontrib>Thomas, H.R</creatorcontrib><creatorcontrib>Sedighi, M</creatorcontrib><title>A dual porosity model of high-pressure gas flow for geoenergy applications</title><title>Canadian geotechnical journal</title><description>This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration.</description><subject>Carbon sequestration</subject><subject>Chemical reactions</subject><subject>Continuums</subject><subject>Descriptions</subject><subject>double porosité</subject><subject>dual porosity</subject><subject>Engineering models</subject><subject>Exchanging</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>flux du gaz</subject><subject>Fractures</subject><subject>Gas flow</subject><subject>Gas mixtures</subject><subject>Gas transport</subject><subject>geoenergy</subject><subject>Geology</subject><subject>géo énergie</subject><subject>haute pression</subject><subject>High pressure</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Modules</subject><subject>Multiphase</subject><subject>Numerical models</subject><subject>Organic chemistry</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Pressure</subject><subject>Storage</subject><subject>séquestration du carbone</subject><subject>Transport</subject><subject>Transport processes</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVkkFr3DAQhUVIoZu0x95FeurB6Yxka9fHJTRNQmihbc5CkUdeLV7LkWyS_ffVkkAbMJSig8TwzQxP7zH2AeEcUdafbbstBKAqoJLiiC1QwKpQgHDMFgD5LdWyfMtOUtoCYFkKsWA3a95MpuNDiCH5cc93oaGOB8c3vt0UQ6SUpki8NYm7LjxyFyJvKVBPsd1zMwydt2b0oU_v2BtnukTvX-5Tdnf55dfFVXH7_ev1xfq2MJVajUUJlpawWsoGVF0bQU4uHUqk-7LCyjYSlTCqcUapWgq6RwmqJBSVk02lmkqeso_Pc4cYHiZKo96GKfZ5pRYoyqwdUPyhWtOR9r0LYzR255PV66oUq_wBWGeqmKHagzrThZ6cz-VX_NkMbwf_oP-GzmegfBraeTs79dOrhsyM9DS2ZkpJX__88R_st1l1NpubIjk9RL8zca8R9CEyOkdGHyKjD5HJPDzzfbTZeDLRbv7R8htDv72v</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hosking, L.J</creator><creator>Thomas, H.R</creator><creator>Sedighi, M</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20180601</creationdate><title>A dual porosity model of high-pressure gas flow for geoenergy applications</title><author>Hosking, L.J ; Thomas, H.R ; Sedighi, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a568t-40ce70873d0699a2ef37f131eb4515cd3162a6dfa66932eb13064e125f3d56d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon sequestration</topic><topic>Chemical reactions</topic><topic>Continuums</topic><topic>Descriptions</topic><topic>double porosité</topic><topic>dual porosity</topic><topic>Engineering models</topic><topic>Exchanging</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>flux du gaz</topic><topic>Fractures</topic><topic>Gas flow</topic><topic>Gas mixtures</topic><topic>Gas transport</topic><topic>geoenergy</topic><topic>Geology</topic><topic>géo énergie</topic><topic>haute pression</topic><topic>High pressure</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Modules</topic><topic>Multiphase</topic><topic>Numerical models</topic><topic>Organic chemistry</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Pressure</topic><topic>Storage</topic><topic>séquestration du carbone</topic><topic>Transport</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosking, L.J</creatorcontrib><creatorcontrib>Thomas, H.R</creatorcontrib><creatorcontrib>Sedighi, M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosking, L.J</au><au>Thomas, H.R</au><au>Sedighi, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dual porosity model of high-pressure gas flow for geoenergy applications</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>55</volume><issue>6</issue><spage>839</spage><epage>851</epage><pages>839-851</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>This paper presents the development of a dual porosity numerical model of multiphase, multicomponent chemical–gas transport using a coupled thermal, hydraulic, chemical, and mechanical formulation. Appropriate relationships are used to describe the transport properties of nonideal, reactive gas mixtures at high pressure, enabling the study of geoenergy applications such as geological carbon sequestration. Theoretical descriptions of the key transport processes are based on a dual porosity approach considering the fracture network and porous matrix as distinct continua over the domain. Flow between the pore regions is handled using mass exchange terms and the model includes equilibrium and kinetically controlled chemical reactions. A numerical solution is obtained with a finite element and finite difference approach and verification of the model is pursued to build confidence in the accuracy of the implementation of the dual porosity governing equations. In the course of these tests, the time-splitting approach used to couple the transport, mass exchange, and chemical reaction modules is shown to have been successfully applied. It is claimed that the modelling platform developed provides an advanced tool for the study of high-pressure gas transport, storage, and displacement for geoenergy applications involving multiphase, multicomponent chemical–gas transport in dual porosity media, such as geological carbon sequestration.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2016-0532</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2018-06, Vol.55 (6), p.839-851
issn 0008-3674
1208-6010
language eng
recordid cdi_proquest_journals_2124532012
source NRC Research Press; Alma/SFX Local Collection
subjects Carbon sequestration
Chemical reactions
Continuums
Descriptions
double porosité
dual porosity
Engineering models
Exchanging
Finite difference method
Finite element method
flux du gaz
Fractures
Gas flow
Gas mixtures
Gas transport
geoenergy
Geology
géo énergie
haute pression
High pressure
Mathematical models
Modelling
Modules
Multiphase
Numerical models
Organic chemistry
Porosity
Porous media
Pressure
Storage
séquestration du carbone
Transport
Transport processes
title A dual porosity model of high-pressure gas flow for geoenergy applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dual%20porosity%20model%20of%20high-pressure%20gas%20flow%20for%20geoenergy%20applications&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Hosking,%20L.J&rft.date=2018-06-01&rft.volume=55&rft.issue=6&rft.spage=839&rft.epage=851&rft.pages=839-851&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2016-0532&rft_dat=%3Cgale_proqu%3EA542801419%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124532012&rft_id=info:pmid/&rft_galeid=A542801419&rfr_iscdi=true