Combining incremental conductance and firefly algorithm for tracking the global MPP of PV arrays

Under partial shading conditions (PSCs), multiple local maximum power points (MPPs) may be exhibited on the P-U curve of photovoltaic systems. Direct control (DIRC) methods cannot extract the global MPP (GMPP); soft computing techniques can achieve it but are time consuming. This paper proposes a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2017-03, Vol.9 (2)
Hauptverfasser: Shi, Ji-Ying, Ling, Le-Tao, Xue, Fei, Qin, Zi-Jian, Li, Ya-Jing, Lai, Zhi-Xin, Yang, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of renewable and sustainable energy
container_volume 9
creator Shi, Ji-Ying
Ling, Le-Tao
Xue, Fei
Qin, Zi-Jian
Li, Ya-Jing
Lai, Zhi-Xin
Yang, Ting
description Under partial shading conditions (PSCs), multiple local maximum power points (MPPs) may be exhibited on the P-U curve of photovoltaic systems. Direct control (DIRC) methods cannot extract the global MPP (GMPP); soft computing techniques can achieve it but are time consuming. This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm (INC-FA) combining incremental conductance (INC) and firefly algorithm (FA) to achieve better adaptability in various environments. INC is widely used because of its low-cost implementation and stability under rapidly changing atmospheric conditions, while FA is efficient in searching the GMPP. This combination (INC-FA) not only enables a faster global searching capability but also performs well as a DIRC method in the case of a single peak. In addition, INC-FA introduces the concept of the global optimal region and devises the population initialization mechanism to determine the initial position and population size of fireflies. Finally, the proposed algorithm is compared with three other MPPT methods under four different conditions. Simulation and experiment results demonstrate that the proposed algorithm can track the GMPP under various conditions with higher speed and accuracy.
doi_str_mv 10.1063/1.4977213
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124525905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124525905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d039fbd4e0a68df464dbb51d90eb09380e3eac651c25987a08261b134cd12fee3</originalsourceid><addsrcrecordid>eNqdkMtKAzEUhoMoWKsL3yDgSmFqTjLXpRRvULELdRszubSpM0lNUqFv75QKunZ1zuL7_sP5EToHMgFSsmuY5E1VUWAHaARNDllFgB7-2Y_RSYwrQkpKCjpC71Pft9ZZt8DWyaB77ZLosPRObWQSTmosnMLGBm26LRbdwgeblj02PuAUhPzYqWmp8aLz7WA-zefYGzx_wyIEsY2n6MiILuqznzlGr3e3L9OHbPZ8_zi9mWWS0SplirDGtCrXRJS1MnmZq7YtQDVEt6RhNdFMC1kWIGnR1JUgNS2hBZZLBdRozcboYp-7Dv5zo2PiK78JbjjJKdC8GDRSDNTlnpLBxzj8xNfB9iJsORC-K5AD_ylwYK_2bJQ2iWS9-x_85cMvyNfKsG9bY37N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124525905</pqid></control><display><type>article</type><title>Combining incremental conductance and firefly algorithm for tracking the global MPP of PV arrays</title><source>American Institute of Physics (AIP) Journals</source><creator>Shi, Ji-Ying ; Ling, Le-Tao ; Xue, Fei ; Qin, Zi-Jian ; Li, Ya-Jing ; Lai, Zhi-Xin ; Yang, Ting</creator><creatorcontrib>Shi, Ji-Ying ; Ling, Le-Tao ; Xue, Fei ; Qin, Zi-Jian ; Li, Ya-Jing ; Lai, Zhi-Xin ; Yang, Ting</creatorcontrib><description>Under partial shading conditions (PSCs), multiple local maximum power points (MPPs) may be exhibited on the P-U curve of photovoltaic systems. Direct control (DIRC) methods cannot extract the global MPP (GMPP); soft computing techniques can achieve it but are time consuming. This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm (INC-FA) combining incremental conductance (INC) and firefly algorithm (FA) to achieve better adaptability in various environments. INC is widely used because of its low-cost implementation and stability under rapidly changing atmospheric conditions, while FA is efficient in searching the GMPP. This combination (INC-FA) not only enables a faster global searching capability but also performs well as a DIRC method in the case of a single peak. In addition, INC-FA introduces the concept of the global optimal region and devises the population initialization mechanism to determine the initial position and population size of fireflies. Finally, the proposed algorithm is compared with three other MPPT methods under four different conditions. Simulation and experiment results demonstrate that the proposed algorithm can track the GMPP under various conditions with higher speed and accuracy.</description><identifier>ISSN: 1941-7012</identifier><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/1.4977213</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Computer simulation ; Control methods ; Heuristic methods ; Incremental conductance ; Maximum power tracking ; Photovoltaic cells ; Power consumption ; Searching ; Shading ; Soft computing ; Solar cells</subject><ispartof>Journal of renewable and sustainable energy, 2017-03, Vol.9 (2)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d039fbd4e0a68df464dbb51d90eb09380e3eac651c25987a08261b134cd12fee3</citedby><cites>FETCH-LOGICAL-c327t-d039fbd4e0a68df464dbb51d90eb09380e3eac651c25987a08261b134cd12fee3</cites><orcidid>0000-0002-9925-9746 ; 0000-0001-7649-4156 ; 0000-0001-6322-0703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/1.4977213$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids></links><search><creatorcontrib>Shi, Ji-Ying</creatorcontrib><creatorcontrib>Ling, Le-Tao</creatorcontrib><creatorcontrib>Xue, Fei</creatorcontrib><creatorcontrib>Qin, Zi-Jian</creatorcontrib><creatorcontrib>Li, Ya-Jing</creatorcontrib><creatorcontrib>Lai, Zhi-Xin</creatorcontrib><creatorcontrib>Yang, Ting</creatorcontrib><title>Combining incremental conductance and firefly algorithm for tracking the global MPP of PV arrays</title><title>Journal of renewable and sustainable energy</title><description>Under partial shading conditions (PSCs), multiple local maximum power points (MPPs) may be exhibited on the P-U curve of photovoltaic systems. Direct control (DIRC) methods cannot extract the global MPP (GMPP); soft computing techniques can achieve it but are time consuming. This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm (INC-FA) combining incremental conductance (INC) and firefly algorithm (FA) to achieve better adaptability in various environments. INC is widely used because of its low-cost implementation and stability under rapidly changing atmospheric conditions, while FA is efficient in searching the GMPP. This combination (INC-FA) not only enables a faster global searching capability but also performs well as a DIRC method in the case of a single peak. In addition, INC-FA introduces the concept of the global optimal region and devises the population initialization mechanism to determine the initial position and population size of fireflies. Finally, the proposed algorithm is compared with three other MPPT methods under four different conditions. Simulation and experiment results demonstrate that the proposed algorithm can track the GMPP under various conditions with higher speed and accuracy.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control methods</subject><subject>Heuristic methods</subject><subject>Incremental conductance</subject><subject>Maximum power tracking</subject><subject>Photovoltaic cells</subject><subject>Power consumption</subject><subject>Searching</subject><subject>Shading</subject><subject>Soft computing</subject><subject>Solar cells</subject><issn>1941-7012</issn><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkMtKAzEUhoMoWKsL3yDgSmFqTjLXpRRvULELdRszubSpM0lNUqFv75QKunZ1zuL7_sP5EToHMgFSsmuY5E1VUWAHaARNDllFgB7-2Y_RSYwrQkpKCjpC71Pft9ZZt8DWyaB77ZLosPRObWQSTmosnMLGBm26LRbdwgeblj02PuAUhPzYqWmp8aLz7WA-zefYGzx_wyIEsY2n6MiILuqznzlGr3e3L9OHbPZ8_zi9mWWS0SplirDGtCrXRJS1MnmZq7YtQDVEt6RhNdFMC1kWIGnR1JUgNS2hBZZLBdRozcboYp-7Dv5zo2PiK78JbjjJKdC8GDRSDNTlnpLBxzj8xNfB9iJsORC-K5AD_ylwYK_2bJQ2iWS9-x_85cMvyNfKsG9bY37N</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Shi, Ji-Ying</creator><creator>Ling, Le-Tao</creator><creator>Xue, Fei</creator><creator>Qin, Zi-Jian</creator><creator>Li, Ya-Jing</creator><creator>Lai, Zhi-Xin</creator><creator>Yang, Ting</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9925-9746</orcidid><orcidid>https://orcid.org/0000-0001-7649-4156</orcidid><orcidid>https://orcid.org/0000-0001-6322-0703</orcidid></search><sort><creationdate>201703</creationdate><title>Combining incremental conductance and firefly algorithm for tracking the global MPP of PV arrays</title><author>Shi, Ji-Ying ; Ling, Le-Tao ; Xue, Fei ; Qin, Zi-Jian ; Li, Ya-Jing ; Lai, Zhi-Xin ; Yang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d039fbd4e0a68df464dbb51d90eb09380e3eac651c25987a08261b134cd12fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control methods</topic><topic>Heuristic methods</topic><topic>Incremental conductance</topic><topic>Maximum power tracking</topic><topic>Photovoltaic cells</topic><topic>Power consumption</topic><topic>Searching</topic><topic>Shading</topic><topic>Soft computing</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Ji-Ying</creatorcontrib><creatorcontrib>Ling, Le-Tao</creatorcontrib><creatorcontrib>Xue, Fei</creatorcontrib><creatorcontrib>Qin, Zi-Jian</creatorcontrib><creatorcontrib>Li, Ya-Jing</creatorcontrib><creatorcontrib>Lai, Zhi-Xin</creatorcontrib><creatorcontrib>Yang, Ting</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Ji-Ying</au><au>Ling, Le-Tao</au><au>Xue, Fei</au><au>Qin, Zi-Jian</au><au>Li, Ya-Jing</au><au>Lai, Zhi-Xin</au><au>Yang, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining incremental conductance and firefly algorithm for tracking the global MPP of PV arrays</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2017-03</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><issn>1941-7012</issn><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>Under partial shading conditions (PSCs), multiple local maximum power points (MPPs) may be exhibited on the P-U curve of photovoltaic systems. Direct control (DIRC) methods cannot extract the global MPP (GMPP); soft computing techniques can achieve it but are time consuming. This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm (INC-FA) combining incremental conductance (INC) and firefly algorithm (FA) to achieve better adaptability in various environments. INC is widely used because of its low-cost implementation and stability under rapidly changing atmospheric conditions, while FA is efficient in searching the GMPP. This combination (INC-FA) not only enables a faster global searching capability but also performs well as a DIRC method in the case of a single peak. In addition, INC-FA introduces the concept of the global optimal region and devises the population initialization mechanism to determine the initial position and population size of fireflies. Finally, the proposed algorithm is compared with three other MPPT methods under four different conditions. Simulation and experiment results demonstrate that the proposed algorithm can track the GMPP under various conditions with higher speed and accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4977213</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9925-9746</orcidid><orcidid>https://orcid.org/0000-0001-7649-4156</orcidid><orcidid>https://orcid.org/0000-0001-6322-0703</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1941-7012
ispartof Journal of renewable and sustainable energy, 2017-03, Vol.9 (2)
issn 1941-7012
1941-7012
language eng
recordid cdi_proquest_journals_2124525905
source American Institute of Physics (AIP) Journals
subjects Algorithms
Computer simulation
Control methods
Heuristic methods
Incremental conductance
Maximum power tracking
Photovoltaic cells
Power consumption
Searching
Shading
Soft computing
Solar cells
title Combining incremental conductance and firefly algorithm for tracking the global MPP of PV arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20incremental%20conductance%20and%20firefly%20algorithm%20for%20tracking%20the%20global%20MPP%20of%20PV%20arrays&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Shi,%20Ji-Ying&rft.date=2017-03&rft.volume=9&rft.issue=2&rft.issn=1941-7012&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/1.4977213&rft_dat=%3Cproquest_scita%3E2124525905%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124525905&rft_id=info:pmid/&rfr_iscdi=true