Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling
Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of th...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2017-03, Vol.146 (9) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 146 |
creator | Awasthi, Shalini Nair, Nisanth N. |
description | Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques. |
doi_str_mv | 10.1063/1.4977704 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124525886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124525886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-46f685e652d13df6630b24e1a2701f97f89e320fc2a8ab84f19bf8145e6b94523</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAk4etbz42H96ktCoUvNSLl5DdfdNu2S-TFuy_d0t7GgaeGZgh5JHBjIESL2wmrdYa5BWZMDA208rCNZkAcJZZBeqW3KW0AwCmuZyQn8Xf0PSx7jZ0W2-2tKpb7FLdd76hISJS7DBujrTxXZVKP2B6pWtsB4x-f4hIfVliczJY0dTU5Ul8OzRj4T25Cb5J-HDRKfleLtbzj2z19f45f1tlpeBin0kVlMlR5bxiogpKCSi4ROa5BhasDsai4BBK7o0vjAzMFsEwOUYKK3MupuTp3DvE_veAae92_SGOA5LjjI9EbowaqeczVcY-pYjBDbFufTw6Bu50nWPucp34B5HeYJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124525886</pqid></control><display><type>article</type><title>Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Awasthi, Shalini ; Nair, Nisanth N.</creator><creatorcontrib>Awasthi, Shalini ; Nair, Nisanth N.</creatorcontrib><description>Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4977704</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Computing time ; Energy conversion efficiency ; Free energy ; Molecular dynamics ; Physics ; Sampling ; Variables</subject><ispartof>The Journal of chemical physics, 2017-03, Vol.146 (9)</ispartof><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-46f685e652d13df6630b24e1a2701f97f89e320fc2a8ab84f19bf8145e6b94523</citedby><cites>FETCH-LOGICAL-c323t-46f685e652d13df6630b24e1a2701f97f89e320fc2a8ab84f19bf8145e6b94523</cites><orcidid>0000-0001-8650-8873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Awasthi, Shalini</creatorcontrib><creatorcontrib>Nair, Nisanth N.</creatorcontrib><title>Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling</title><title>The Journal of chemical physics</title><description>Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques.</description><subject>Computer simulation</subject><subject>Computing time</subject><subject>Energy conversion efficiency</subject><subject>Free energy</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Sampling</subject><subject>Variables</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAk4etbz42H96ktCoUvNSLl5DdfdNu2S-TFuy_d0t7GgaeGZgh5JHBjIESL2wmrdYa5BWZMDA208rCNZkAcJZZBeqW3KW0AwCmuZyQn8Xf0PSx7jZ0W2-2tKpb7FLdd76hISJS7DBujrTxXZVKP2B6pWtsB4x-f4hIfVliczJY0dTU5Ul8OzRj4T25Cb5J-HDRKfleLtbzj2z19f45f1tlpeBin0kVlMlR5bxiogpKCSi4ROa5BhasDsai4BBK7o0vjAzMFsEwOUYKK3MupuTp3DvE_veAae92_SGOA5LjjI9EbowaqeczVcY-pYjBDbFufTw6Bu50nWPucp34B5HeYJA</recordid><startdate>20170307</startdate><enddate>20170307</enddate><creator>Awasthi, Shalini</creator><creator>Nair, Nisanth N.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8650-8873</orcidid></search><sort><creationdate>20170307</creationdate><title>Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling</title><author>Awasthi, Shalini ; Nair, Nisanth N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-46f685e652d13df6630b24e1a2701f97f89e320fc2a8ab84f19bf8145e6b94523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Computing time</topic><topic>Energy conversion efficiency</topic><topic>Free energy</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Sampling</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awasthi, Shalini</creatorcontrib><creatorcontrib>Nair, Nisanth N.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awasthi, Shalini</au><au>Nair, Nisanth N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling</atitle><jtitle>The Journal of chemical physics</jtitle><date>2017-03-07</date><risdate>2017</risdate><volume>146</volume><issue>9</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4977704</doi><orcidid>https://orcid.org/0000-0001-8650-8873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2017-03, Vol.146 (9) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2124525886 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Computer simulation Computing time Energy conversion efficiency Free energy Molecular dynamics Physics Sampling Variables |
title | Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20high%20dimensional%20free%20energy%20landscapes:%20Temperature%20accelerated%20sliced%20sampling&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Awasthi,%20Shalini&rft.date=2017-03-07&rft.volume=146&rft.issue=9&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4977704&rft_dat=%3Cproquest_cross%3E2124525886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124525886&rft_id=info:pmid/&rfr_iscdi=true |