Exploiting the principle parametric resonance of an electric oscillator for vibratory energy harvesting

Vibratory energy harvesters typically exploit ordinary direct resonances to mechanically amplify environmental inputs before channeling a portion of their energy into an electric load using an electromechanical transduction mechanism. Nonetheless, parametric resonance which has also been recently ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-02, Vol.110 (9)
Hauptverfasser: Caldwell, N. B., Daqaq, M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Applied physics letters
container_volume 110
creator Caldwell, N. B.
Daqaq, M. F.
description Vibratory energy harvesters typically exploit ordinary direct resonances to mechanically amplify environmental inputs before channeling a portion of their energy into an electric load using an electromechanical transduction mechanism. Nonetheless, parametric resonance which has also been recently exploited, but to a lesser extent, holds a key advantage over direct excitations in that, when the level of input excitation exceeds a certain threshold, the amplitude of growth associated with parametric pumping is not limited by the total linear damping present in the system. While all of the previous research studies using parametric resonances for energy harvesting focused on utilizing it as a means of mechanical amplification, this letter demonstrates that vibratory excitations can also be used effectively to induce parametric resonances in the harvesting circuit itself, thereby providing a direct and simple means of electric amplification. A vibratory energy harvester exploiting this phenomenon is proposed in this letter and is shown to produce a maximum of 18 mW root-mean-square power per 1 g of input acceleration.
doi_str_mv 10.1063/1.4977835
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124525784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124525784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-7c2740af8e0a2e6304d2b6a96f1e6e41b343cec1b09f101f6a8f7661b24566e13</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv0HAk8LWTLKb7B6l1D9Q8KLnJZtO2i3bZE22xX57U1vw7mGYecyPecwj5BbYBJgUjzDJK6VKUZyRETClMgFQnpMRY0xksirgklzFuE6y4EKMyHL23Xe-HVq3pMMKaR9aZ9q-S5MOeoNDaA0NGL3TziD1lmpHsUPzu_DRtF2nBx-oTbVrm3AQe4oOw3JPVzrsMB6OX5MLq7uIN6c-Jp_Ps4_pazZ_f3mbPs0zIyQfMmW4ypm2JTLNUQqWL3gjdSUtoMQcGpELgwYaVllgYKUurZISGp4XUiKIMbk73u2D_9om73rtt8Ely5pDgnihyjxR90fKBB9jQFunvzc67Gtg9SHHGupTjol9OLLp10EPrXf_g3c-_IF1v7DiB-n0gpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124525784</pqid></control><display><type>article</type><title>Exploiting the principle parametric resonance of an electric oscillator for vibratory energy harvesting</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><creator>Caldwell, N. B. ; Daqaq, M. F.</creator><creatorcontrib>Caldwell, N. B. ; Daqaq, M. F.</creatorcontrib><description>Vibratory energy harvesters typically exploit ordinary direct resonances to mechanically amplify environmental inputs before channeling a portion of their energy into an electric load using an electromechanical transduction mechanism. Nonetheless, parametric resonance which has also been recently exploited, but to a lesser extent, holds a key advantage over direct excitations in that, when the level of input excitation exceeds a certain threshold, the amplitude of growth associated with parametric pumping is not limited by the total linear damping present in the system. While all of the previous research studies using parametric resonances for energy harvesting focused on utilizing it as a means of mechanical amplification, this letter demonstrates that vibratory excitations can also be used effectively to induce parametric resonances in the harvesting circuit itself, thereby providing a direct and simple means of electric amplification. A vibratory energy harvester exploiting this phenomenon is proposed in this letter and is shown to produce a maximum of 18 mW root-mean-square power per 1 g of input acceleration.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4977835</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplification ; Applied physics ; Channeling ; Damping ; Energy harvesting ; Harvesters ; Linear damping</subject><ispartof>Applied physics letters, 2017-02, Vol.110 (9)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-7c2740af8e0a2e6304d2b6a96f1e6e41b343cec1b09f101f6a8f7661b24566e13</citedby><cites>FETCH-LOGICAL-c362t-7c2740af8e0a2e6304d2b6a96f1e6e41b343cec1b09f101f6a8f7661b24566e13</cites><orcidid>0000-0001-7873-1477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4977835$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Caldwell, N. B.</creatorcontrib><creatorcontrib>Daqaq, M. F.</creatorcontrib><title>Exploiting the principle parametric resonance of an electric oscillator for vibratory energy harvesting</title><title>Applied physics letters</title><description>Vibratory energy harvesters typically exploit ordinary direct resonances to mechanically amplify environmental inputs before channeling a portion of their energy into an electric load using an electromechanical transduction mechanism. Nonetheless, parametric resonance which has also been recently exploited, but to a lesser extent, holds a key advantage over direct excitations in that, when the level of input excitation exceeds a certain threshold, the amplitude of growth associated with parametric pumping is not limited by the total linear damping present in the system. While all of the previous research studies using parametric resonances for energy harvesting focused on utilizing it as a means of mechanical amplification, this letter demonstrates that vibratory excitations can also be used effectively to induce parametric resonances in the harvesting circuit itself, thereby providing a direct and simple means of electric amplification. A vibratory energy harvester exploiting this phenomenon is proposed in this letter and is shown to produce a maximum of 18 mW root-mean-square power per 1 g of input acceleration.</description><subject>Amplification</subject><subject>Applied physics</subject><subject>Channeling</subject><subject>Damping</subject><subject>Energy harvesting</subject><subject>Harvesters</subject><subject>Linear damping</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv0HAk8LWTLKb7B6l1D9Q8KLnJZtO2i3bZE22xX57U1vw7mGYecyPecwj5BbYBJgUjzDJK6VKUZyRETClMgFQnpMRY0xksirgklzFuE6y4EKMyHL23Xe-HVq3pMMKaR9aZ9q-S5MOeoNDaA0NGL3TziD1lmpHsUPzu_DRtF2nBx-oTbVrm3AQe4oOw3JPVzrsMB6OX5MLq7uIN6c-Jp_Ps4_pazZ_f3mbPs0zIyQfMmW4ypm2JTLNUQqWL3gjdSUtoMQcGpELgwYaVllgYKUurZISGp4XUiKIMbk73u2D_9om73rtt8Ely5pDgnihyjxR90fKBB9jQFunvzc67Gtg9SHHGupTjol9OLLp10EPrXf_g3c-_IF1v7DiB-n0gpU</recordid><startdate>20170227</startdate><enddate>20170227</enddate><creator>Caldwell, N. B.</creator><creator>Daqaq, M. F.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7873-1477</orcidid></search><sort><creationdate>20170227</creationdate><title>Exploiting the principle parametric resonance of an electric oscillator for vibratory energy harvesting</title><author>Caldwell, N. B. ; Daqaq, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-7c2740af8e0a2e6304d2b6a96f1e6e41b343cec1b09f101f6a8f7661b24566e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amplification</topic><topic>Applied physics</topic><topic>Channeling</topic><topic>Damping</topic><topic>Energy harvesting</topic><topic>Harvesters</topic><topic>Linear damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldwell, N. B.</creatorcontrib><creatorcontrib>Daqaq, M. F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldwell, N. B.</au><au>Daqaq, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting the principle parametric resonance of an electric oscillator for vibratory energy harvesting</atitle><jtitle>Applied physics letters</jtitle><date>2017-02-27</date><risdate>2017</risdate><volume>110</volume><issue>9</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Vibratory energy harvesters typically exploit ordinary direct resonances to mechanically amplify environmental inputs before channeling a portion of their energy into an electric load using an electromechanical transduction mechanism. Nonetheless, parametric resonance which has also been recently exploited, but to a lesser extent, holds a key advantage over direct excitations in that, when the level of input excitation exceeds a certain threshold, the amplitude of growth associated with parametric pumping is not limited by the total linear damping present in the system. While all of the previous research studies using parametric resonances for energy harvesting focused on utilizing it as a means of mechanical amplification, this letter demonstrates that vibratory excitations can also be used effectively to induce parametric resonances in the harvesting circuit itself, thereby providing a direct and simple means of electric amplification. A vibratory energy harvester exploiting this phenomenon is proposed in this letter and is shown to produce a maximum of 18 mW root-mean-square power per 1 g of input acceleration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4977835</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7873-1477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2017-02, Vol.110 (9)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2124525784
source AIP Journals; Alma/SFX Local Collection
subjects Amplification
Applied physics
Channeling
Damping
Energy harvesting
Harvesters
Linear damping
title Exploiting the principle parametric resonance of an electric oscillator for vibratory energy harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20the%20principle%20parametric%20resonance%20of%20an%20electric%20oscillator%20for%20vibratory%20energy%20harvesting&rft.jtitle=Applied%20physics%20letters&rft.au=Caldwell,%20N.%20B.&rft.date=2017-02-27&rft.volume=110&rft.issue=9&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4977835&rft_dat=%3Cproquest_cross%3E2124525784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124525784&rft_id=info:pmid/&rfr_iscdi=true