On joint spectral radius of commuting operators in Hilbert spaces

Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2018-11, Vol.557, p.455-463
Hauptverfasser: Baklouti, Hamadi, Feki, Kais
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue
container_start_page 455
container_title Linear algebra and its applications
container_volume 557
creator Baklouti, Hamadi
Feki, Kais
description Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical radius of T. This generalizes the well known relation between the spectral and the numerical radii of Hilbert space operators which is proved in [10].
doi_str_mv 10.1016/j.laa.2018.08.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124466687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518303963</els_id><sourcerecordid>2124466687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-aaa30c6273345b379c162eb3201ad924b89573ce9a2a18082ea98ff6beda58f33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Bz13z0aYpnpZFXWFhL3oO03QqKd2mJq3gvzdlPQsDc5ln5p2HkHvONpxx9dhteoCNYFxvWCpeXpAV16XMuC7UJVkxJvJMllVxTW5i7BhjecnEimyPA-28GyYaR7RTgJ4GaNwcqW-p9afTPLnhk_oRA0w-ROoGund9jWEhwGK8JVct9BHv_vqafLw8v-_22eH4-rbbHjIrlZ4yAJDMKlFKmRd1SmK5EljLFBmaSuS1ropSWqxAANdMC4RKt62qsYFCt1KuycN57xj814xxMp2fw5BOGsFFniul0r9rws9TNvgYA7ZmDO4E4cdwZhZTpjPJlFlMGZaKL8zTmcEU_9thMNE6HCw2LiQnpvHuH_oXNClwRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124466687</pqid></control><display><type>article</type><title>On joint spectral radius of commuting operators in Hilbert spaces</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baklouti, Hamadi ; Feki, Kais</creator><creatorcontrib>Baklouti, Hamadi ; Feki, Kais</creatorcontrib><description>Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical radius of T. This generalizes the well known relation between the spectral and the numerical radii of Hilbert space operators which is proved in [10].</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.08.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Hilbert space ; Joint approximate spectrum ; Joint spectral radius ; Linear algebra ; Mathematical functions ; Normal operator ; Numerical radius ; Operators</subject><ispartof>Linear algebra and its applications, 2018-11, Vol.557, p.455-463</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Nov 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-aaa30c6273345b379c162eb3201ad924b89573ce9a2a18082ea98ff6beda58f33</citedby><cites>FETCH-LOGICAL-c368t-aaa30c6273345b379c162eb3201ad924b89573ce9a2a18082ea98ff6beda58f33</cites><orcidid>0000-0002-9326-4173 ; 0000-0002-8557-1229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379518303963$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Baklouti, Hamadi</creatorcontrib><creatorcontrib>Feki, Kais</creatorcontrib><title>On joint spectral radius of commuting operators in Hilbert spaces</title><title>Linear algebra and its applications</title><description>Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical radius of T. This generalizes the well known relation between the spectral and the numerical radii of Hilbert space operators which is proved in [10].</description><subject>Hilbert space</subject><subject>Joint approximate spectrum</subject><subject>Joint spectral radius</subject><subject>Linear algebra</subject><subject>Mathematical functions</subject><subject>Normal operator</subject><subject>Numerical radius</subject><subject>Operators</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Bz13z0aYpnpZFXWFhL3oO03QqKd2mJq3gvzdlPQsDc5ln5p2HkHvONpxx9dhteoCNYFxvWCpeXpAV16XMuC7UJVkxJvJMllVxTW5i7BhjecnEimyPA-28GyYaR7RTgJ4GaNwcqW-p9afTPLnhk_oRA0w-ROoGund9jWEhwGK8JVct9BHv_vqafLw8v-_22eH4-rbbHjIrlZ4yAJDMKlFKmRd1SmK5EljLFBmaSuS1ropSWqxAANdMC4RKt62qsYFCt1KuycN57xj814xxMp2fw5BOGsFFniul0r9rws9TNvgYA7ZmDO4E4cdwZhZTpjPJlFlMGZaKL8zTmcEU_9thMNE6HCw2LiQnpvHuH_oXNClwRA</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Baklouti, Hamadi</creator><creator>Feki, Kais</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9326-4173</orcidid><orcidid>https://orcid.org/0000-0002-8557-1229</orcidid></search><sort><creationdate>20181115</creationdate><title>On joint spectral radius of commuting operators in Hilbert spaces</title><author>Baklouti, Hamadi ; Feki, Kais</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-aaa30c6273345b379c162eb3201ad924b89573ce9a2a18082ea98ff6beda58f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Hilbert space</topic><topic>Joint approximate spectrum</topic><topic>Joint spectral radius</topic><topic>Linear algebra</topic><topic>Mathematical functions</topic><topic>Normal operator</topic><topic>Numerical radius</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baklouti, Hamadi</creatorcontrib><creatorcontrib>Feki, Kais</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baklouti, Hamadi</au><au>Feki, Kais</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On joint spectral radius of commuting operators in Hilbert spaces</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>557</volume><spage>455</spage><epage>463</epage><pages>455-463</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical radius of T. This generalizes the well known relation between the spectral and the numerical radii of Hilbert space operators which is proved in [10].</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.08.017</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9326-4173</orcidid><orcidid>https://orcid.org/0000-0002-8557-1229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2018-11, Vol.557, p.455-463
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2124466687
source ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Hilbert space
Joint approximate spectrum
Joint spectral radius
Linear algebra
Mathematical functions
Normal operator
Numerical radius
Operators
title On joint spectral radius of commuting operators in Hilbert spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20joint%20spectral%20radius%20of%20commuting%20operators%20in%20Hilbert%20spaces&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Baklouti,%20Hamadi&rft.date=2018-11-15&rft.volume=557&rft.spage=455&rft.epage=463&rft.pages=455-463&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.08.017&rft_dat=%3Cproquest_cross%3E2124466687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124466687&rft_id=info:pmid/&rft_els_id=S0024379518303963&rfr_iscdi=true