On joint spectral radius of commuting operators in Hilbert spaces
Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical rad...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-11, Vol.557, p.455-463 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 463 |
---|---|
container_issue | |
container_start_page | 455 |
container_title | Linear algebra and its applications |
container_volume | 557 |
creator | Baklouti, Hamadi Feki, Kais |
description | Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical radius of T. This generalizes the well known relation between the spectral and the numerical radii of Hilbert space operators which is proved in [10]. |
doi_str_mv | 10.1016/j.laa.2018.08.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124466687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518303963</els_id><sourcerecordid>2124466687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-aaa30c6273345b379c162eb3201ad924b89573ce9a2a18082ea98ff6beda58f33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Bz13z0aYpnpZFXWFhL3oO03QqKd2mJq3gvzdlPQsDc5ln5p2HkHvONpxx9dhteoCNYFxvWCpeXpAV16XMuC7UJVkxJvJMllVxTW5i7BhjecnEimyPA-28GyYaR7RTgJ4GaNwcqW-p9afTPLnhk_oRA0w-ROoGund9jWEhwGK8JVct9BHv_vqafLw8v-_22eH4-rbbHjIrlZ4yAJDMKlFKmRd1SmK5EljLFBmaSuS1ropSWqxAANdMC4RKt62qsYFCt1KuycN57xj814xxMp2fw5BOGsFFniul0r9rws9TNvgYA7ZmDO4E4cdwZhZTpjPJlFlMGZaKL8zTmcEU_9thMNE6HCw2LiQnpvHuH_oXNClwRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124466687</pqid></control><display><type>article</type><title>On joint spectral radius of commuting operators in Hilbert spaces</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baklouti, Hamadi ; Feki, Kais</creator><creatorcontrib>Baklouti, Hamadi ; Feki, Kais</creatorcontrib><description>Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical radius of T. This generalizes the well known relation between the spectral and the numerical radii of Hilbert space operators which is proved in [10].</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.08.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Hilbert space ; Joint approximate spectrum ; Joint spectral radius ; Linear algebra ; Mathematical functions ; Normal operator ; Numerical radius ; Operators</subject><ispartof>Linear algebra and its applications, 2018-11, Vol.557, p.455-463</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Nov 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-aaa30c6273345b379c162eb3201ad924b89573ce9a2a18082ea98ff6beda58f33</citedby><cites>FETCH-LOGICAL-c368t-aaa30c6273345b379c162eb3201ad924b89573ce9a2a18082ea98ff6beda58f33</cites><orcidid>0000-0002-9326-4173 ; 0000-0002-8557-1229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379518303963$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Baklouti, Hamadi</creatorcontrib><creatorcontrib>Feki, Kais</creatorcontrib><title>On joint spectral radius of commuting operators in Hilbert spaces</title><title>Linear algebra and its applications</title><description>Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical radius of T. This generalizes the well known relation between the spectral and the numerical radii of Hilbert space operators which is proved in [10].</description><subject>Hilbert space</subject><subject>Joint approximate spectrum</subject><subject>Joint spectral radius</subject><subject>Linear algebra</subject><subject>Mathematical functions</subject><subject>Normal operator</subject><subject>Numerical radius</subject><subject>Operators</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Bz13z0aYpnpZFXWFhL3oO03QqKd2mJq3gvzdlPQsDc5ln5p2HkHvONpxx9dhteoCNYFxvWCpeXpAV16XMuC7UJVkxJvJMllVxTW5i7BhjecnEimyPA-28GyYaR7RTgJ4GaNwcqW-p9afTPLnhk_oRA0w-ROoGund9jWEhwGK8JVct9BHv_vqafLw8v-_22eH4-rbbHjIrlZ4yAJDMKlFKmRd1SmK5EljLFBmaSuS1ropSWqxAANdMC4RKt62qsYFCt1KuycN57xj814xxMp2fw5BOGsFFniul0r9rws9TNvgYA7ZmDO4E4cdwZhZTpjPJlFlMGZaKL8zTmcEU_9thMNE6HCw2LiQnpvHuH_oXNClwRA</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Baklouti, Hamadi</creator><creator>Feki, Kais</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9326-4173</orcidid><orcidid>https://orcid.org/0000-0002-8557-1229</orcidid></search><sort><creationdate>20181115</creationdate><title>On joint spectral radius of commuting operators in Hilbert spaces</title><author>Baklouti, Hamadi ; Feki, Kais</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-aaa30c6273345b379c162eb3201ad924b89573ce9a2a18082ea98ff6beda58f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Hilbert space</topic><topic>Joint approximate spectrum</topic><topic>Joint spectral radius</topic><topic>Linear algebra</topic><topic>Mathematical functions</topic><topic>Normal operator</topic><topic>Numerical radius</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baklouti, Hamadi</creatorcontrib><creatorcontrib>Feki, Kais</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baklouti, Hamadi</au><au>Feki, Kais</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On joint spectral radius of commuting operators in Hilbert spaces</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>557</volume><spage>455</spage><epage>463</epage><pages>455-463</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Our aim in this paper is to give a new formula of the joint spectral radius of commuting d-tuples of operators on a complex Hilbert space. Also we show that r(T)≤ω(T) for a commuting d-tuple of operators T, where r(T) and ω(T) denote respectively the joint spectral radius and the joint numerical radius of T. This generalizes the well known relation between the spectral and the numerical radii of Hilbert space operators which is proved in [10].</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.08.017</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9326-4173</orcidid><orcidid>https://orcid.org/0000-0002-8557-1229</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2018-11, Vol.557, p.455-463 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2124466687 |
source | ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Hilbert space Joint approximate spectrum Joint spectral radius Linear algebra Mathematical functions Normal operator Numerical radius Operators |
title | On joint spectral radius of commuting operators in Hilbert spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20joint%20spectral%20radius%20of%20commuting%20operators%20in%20Hilbert%20spaces&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Baklouti,%20Hamadi&rft.date=2018-11-15&rft.volume=557&rft.spage=455&rft.epage=463&rft.pages=455-463&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.08.017&rft_dat=%3Cproquest_cross%3E2124466687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124466687&rft_id=info:pmid/&rft_els_id=S0024379518303963&rfr_iscdi=true |