Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays

We incorporate three distributed time delays into the model of pathogen dynamics with antibody and Cytotoxic T Lymphocyte (CTL) immune responses. We consider both actively and latently infected cells. The pathogen‐target incidence rate, production/proliferation, and removal rates of the cells and pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2018-11, Vol.41 (16), p.6645-6672
Hauptverfasser: Elaiw, Ahmed M., AlShamrani, Noura H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6672
container_issue 16
container_start_page 6645
container_title Mathematical methods in the applied sciences
container_volume 41
creator Elaiw, Ahmed M.
AlShamrani, Noura H.
description We incorporate three distributed time delays into the model of pathogen dynamics with antibody and Cytotoxic T Lymphocyte (CTL) immune responses. We consider both actively and latently infected cells. The pathogen‐target incidence rate, production/proliferation, and removal rates of the cells and pathogens are represented by general nonlinear functions. We show that the solutions of the proposed model are nonnegative and ultimately bounded. We derive four threshold parameters that fully determine the existence and stability of the five steady states of the model. Using Lyapunov functionals, we established the global stability of the steady states of the model. The theoretical results are confirmed by numerical simulations.
doi_str_mv 10.1002/mma.5182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124418143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124418143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-2843703bc49951cf989d8811c4dada03becff2e88117a1da7b409055e2bab6133</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqUg8QiWuHBJ8TpOEx-rij-pFQfgwsVybIe6ipMQO1R5exzKldNKM9_ujgahayALIITeOScXGRT0BM2AcJ4Ay5enaEYgJwmjwM7Rhfd7QkgBQGfo4zXI0tY2jLitsGyw1LIL9ttg69zQTHonw679NA3WYyOdVR67VpsaH2zY4VoG06gxbmrshjrYrjY4unL0l-iskrU3V39zjt4f7t_WT8nm5fF5vdokivKUJrRgaU7SUjHOM1AVL7guYjjFdMwSDaOqippJyiVomZeMcJJlhpayXEKaztHN8W7Xt1-D8UHs26Fv4ktBgTIGBbCJuj1Sqm-9700lut462Y8CiJiaE7E5MTUX0eSIHmxtxn85sd2ufvkfIUBvhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124418143</pqid></control><display><type>article</type><title>Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays</title><source>Wiley Online Library Journals</source><creator>Elaiw, Ahmed M. ; AlShamrani, Noura H.</creator><creatorcontrib>Elaiw, Ahmed M. ; AlShamrani, Noura H.</creatorcontrib><description>We incorporate three distributed time delays into the model of pathogen dynamics with antibody and Cytotoxic T Lymphocyte (CTL) immune responses. We consider both actively and latently infected cells. The pathogen‐target incidence rate, production/proliferation, and removal rates of the cells and pathogens are represented by general nonlinear functions. We show that the solutions of the proposed model are nonnegative and ultimately bounded. We derive four threshold parameters that fully determine the existence and stability of the five steady states of the model. Using Lyapunov functionals, we established the global stability of the steady states of the model. The theoretical results are confirmed by numerical simulations.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5182</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>adaptive immune response ; Computer simulation ; Dynamic stability ; Functionals ; global stability ; Immunity ; intracellular delay ; Lyapunov function ; Mathematical models ; pathogen infection ; Pathogens ; Steady state</subject><ispartof>Mathematical methods in the applied sciences, 2018-11, Vol.41 (16), p.6645-6672</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-2843703bc49951cf989d8811c4dada03becff2e88117a1da7b409055e2bab6133</citedby><cites>FETCH-LOGICAL-c2932-2843703bc49951cf989d8811c4dada03becff2e88117a1da7b409055e2bab6133</cites><orcidid>0000-0001-5030-633X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5182$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5182$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Elaiw, Ahmed M.</creatorcontrib><creatorcontrib>AlShamrani, Noura H.</creatorcontrib><title>Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays</title><title>Mathematical methods in the applied sciences</title><description>We incorporate three distributed time delays into the model of pathogen dynamics with antibody and Cytotoxic T Lymphocyte (CTL) immune responses. We consider both actively and latently infected cells. The pathogen‐target incidence rate, production/proliferation, and removal rates of the cells and pathogens are represented by general nonlinear functions. We show that the solutions of the proposed model are nonnegative and ultimately bounded. We derive four threshold parameters that fully determine the existence and stability of the five steady states of the model. Using Lyapunov functionals, we established the global stability of the steady states of the model. The theoretical results are confirmed by numerical simulations.</description><subject>adaptive immune response</subject><subject>Computer simulation</subject><subject>Dynamic stability</subject><subject>Functionals</subject><subject>global stability</subject><subject>Immunity</subject><subject>intracellular delay</subject><subject>Lyapunov function</subject><subject>Mathematical models</subject><subject>pathogen infection</subject><subject>Pathogens</subject><subject>Steady state</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqUg8QiWuHBJ8TpOEx-rij-pFQfgwsVybIe6ipMQO1R5exzKldNKM9_ujgahayALIITeOScXGRT0BM2AcJ4Ay5enaEYgJwmjwM7Rhfd7QkgBQGfo4zXI0tY2jLitsGyw1LIL9ttg69zQTHonw679NA3WYyOdVR67VpsaH2zY4VoG06gxbmrshjrYrjY4unL0l-iskrU3V39zjt4f7t_WT8nm5fF5vdokivKUJrRgaU7SUjHOM1AVL7guYjjFdMwSDaOqippJyiVomZeMcJJlhpayXEKaztHN8W7Xt1-D8UHs26Fv4ktBgTIGBbCJuj1Sqm-9700lut462Y8CiJiaE7E5MTUX0eSIHmxtxn85sd2ufvkfIUBvhw</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Elaiw, Ahmed M.</creator><creator>AlShamrani, Noura H.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5030-633X</orcidid></search><sort><creationdate>20181115</creationdate><title>Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays</title><author>Elaiw, Ahmed M. ; AlShamrani, Noura H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-2843703bc49951cf989d8811c4dada03becff2e88117a1da7b409055e2bab6133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adaptive immune response</topic><topic>Computer simulation</topic><topic>Dynamic stability</topic><topic>Functionals</topic><topic>global stability</topic><topic>Immunity</topic><topic>intracellular delay</topic><topic>Lyapunov function</topic><topic>Mathematical models</topic><topic>pathogen infection</topic><topic>Pathogens</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elaiw, Ahmed M.</creatorcontrib><creatorcontrib>AlShamrani, Noura H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elaiw, Ahmed M.</au><au>AlShamrani, Noura H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>41</volume><issue>16</issue><spage>6645</spage><epage>6672</epage><pages>6645-6672</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We incorporate three distributed time delays into the model of pathogen dynamics with antibody and Cytotoxic T Lymphocyte (CTL) immune responses. We consider both actively and latently infected cells. The pathogen‐target incidence rate, production/proliferation, and removal rates of the cells and pathogens are represented by general nonlinear functions. We show that the solutions of the proposed model are nonnegative and ultimately bounded. We derive four threshold parameters that fully determine the existence and stability of the five steady states of the model. Using Lyapunov functionals, we established the global stability of the steady states of the model. The theoretical results are confirmed by numerical simulations.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5182</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5030-633X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2018-11, Vol.41 (16), p.6645-6672
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2124418143
source Wiley Online Library Journals
subjects adaptive immune response
Computer simulation
Dynamic stability
Functionals
global stability
Immunity
intracellular delay
Lyapunov function
Mathematical models
pathogen infection
Pathogens
Steady state
title Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20an%20adaptive%20immunity%20pathogen%20dynamics%20model%20with%20latency%20and%20multiple%20delays&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Elaiw,%20Ahmed%20M.&rft.date=2018-11-15&rft.volume=41&rft.issue=16&rft.spage=6645&rft.epage=6672&rft.pages=6645-6672&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5182&rft_dat=%3Cproquest_cross%3E2124418143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124418143&rft_id=info:pmid/&rfr_iscdi=true