Matrix‐valued radial basis functions for the Lamé system

The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2018-11, Vol.41 (16), p.6080-6107
Hauptverfasser: Grzhibovskis, R., Michel, C., Rjasanow, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6107
container_issue 16
container_start_page 6080
container_title Mathematical methods in the applied sciences
container_volume 41
creator Grzhibovskis, R.
Michel, C.
Rjasanow, S.
description The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right hand side. The solvability of the interpolation problem is established. Additionally, stability, and accuracy estimates for the method are given. These theoretical results are illustrated on several numerical examples related to the Lamé system.
doi_str_mv 10.1002/mma.5121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124418100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124418100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2541-fa4312990f917af7e25bb3837a2387d89468616d489ca1ae467c6c9b4693d1aa3</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpSBwhEhs2Lh7H9UOsqoqXlIoNrK1J4ohUSVPsBMiOI3ANzsFNOAkpYctqZvHpH81PyCmwGTDGL-oaZ3PgsEcmwIyhIJTcJxMGilHBQRySoxDWjDENwCfkcoWtL9--3z9esOpcHnnMS6yiFEMZoqLbZG3ZbIat8VH75KIE66_PKPShdfUxOSiwCu7kb07J4_XVw_KWJvc3d8tFQjM-F0ALFDFwY1hhQGGhHJ-naaxjhTzWKtdGSC1B5kKbDAGdkCqTmUmFNHEOiPGUnI25W988dy60dt10fjOctBy4EKCHzwd1PqrMNyF4V9itL2v0vQVmd9XYoRq7q2agdKSvZeX6f51drRa__ge6eGR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124418100</pqid></control><display><type>article</type><title>Matrix‐valued radial basis functions for the Lamé system</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grzhibovskis, R. ; Michel, C. ; Rjasanow, S.</creator><creatorcontrib>Grzhibovskis, R. ; Michel, C. ; Rjasanow, S.</creatorcontrib><description>The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right hand side. The solvability of the interpolation problem is established. Additionally, stability, and accuracy estimates for the method are given. These theoretical results are illustrated on several numerical examples related to the Lamé system.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5121</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Basis functions ; Interpolation ; Lamé system ; Mathematical analysis ; matrix‐valued RBF ; Operators (mathematics) ; Partial differential equations ; particular solutions ; Radial basis function</subject><ispartof>Mathematical methods in the applied sciences, 2018-11, Vol.41 (16), p.6080-6107</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2541-fa4312990f917af7e25bb3837a2387d89468616d489ca1ae467c6c9b4693d1aa3</cites><orcidid>0000-0002-6646-230X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Grzhibovskis, R.</creatorcontrib><creatorcontrib>Michel, C.</creatorcontrib><creatorcontrib>Rjasanow, S.</creatorcontrib><title>Matrix‐valued radial basis functions for the Lamé system</title><title>Mathematical methods in the applied sciences</title><description>The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right hand side. The solvability of the interpolation problem is established. Additionally, stability, and accuracy estimates for the method are given. These theoretical results are illustrated on several numerical examples related to the Lamé system.</description><subject>Basis functions</subject><subject>Interpolation</subject><subject>Lamé system</subject><subject>Mathematical analysis</subject><subject>matrix‐valued RBF</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>particular solutions</subject><subject>Radial basis function</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10EtOwzAQBmALgUQpSBwhEhs2Lh7H9UOsqoqXlIoNrK1J4ohUSVPsBMiOI3ANzsFNOAkpYctqZvHpH81PyCmwGTDGL-oaZ3PgsEcmwIyhIJTcJxMGilHBQRySoxDWjDENwCfkcoWtL9--3z9esOpcHnnMS6yiFEMZoqLbZG3ZbIat8VH75KIE66_PKPShdfUxOSiwCu7kb07J4_XVw_KWJvc3d8tFQjM-F0ALFDFwY1hhQGGhHJ-naaxjhTzWKtdGSC1B5kKbDAGdkCqTmUmFNHEOiPGUnI25W988dy60dt10fjOctBy4EKCHzwd1PqrMNyF4V9itL2v0vQVmd9XYoRq7q2agdKSvZeX6f51drRa__ge6eGR4</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Grzhibovskis, R.</creator><creator>Michel, C.</creator><creator>Rjasanow, S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6646-230X</orcidid></search><sort><creationdate>20181115</creationdate><title>Matrix‐valued radial basis functions for the Lamé system</title><author>Grzhibovskis, R. ; Michel, C. ; Rjasanow, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2541-fa4312990f917af7e25bb3837a2387d89468616d489ca1ae467c6c9b4693d1aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Interpolation</topic><topic>Lamé system</topic><topic>Mathematical analysis</topic><topic>matrix‐valued RBF</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>particular solutions</topic><topic>Radial basis function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grzhibovskis, R.</creatorcontrib><creatorcontrib>Michel, C.</creatorcontrib><creatorcontrib>Rjasanow, S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grzhibovskis, R.</au><au>Michel, C.</au><au>Rjasanow, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix‐valued radial basis functions for the Lamé system</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>41</volume><issue>16</issue><spage>6080</spage><epage>6107</epage><pages>6080-6107</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right hand side. The solvability of the interpolation problem is established. Additionally, stability, and accuracy estimates for the method are given. These theoretical results are illustrated on several numerical examples related to the Lamé system.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5121</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-6646-230X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2018-11, Vol.41 (16), p.6080-6107
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2124418100
source Wiley Online Library Journals Frontfile Complete
subjects Basis functions
Interpolation
Lamé system
Mathematical analysis
matrix‐valued RBF
Operators (mathematics)
Partial differential equations
particular solutions
Radial basis function
title Matrix‐valued radial basis functions for the Lamé system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%E2%80%90valued%20radial%20basis%20functions%20for%20the%20Lam%C3%A9%20system&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Grzhibovskis,%20R.&rft.date=2018-11-15&rft.volume=41&rft.issue=16&rft.spage=6080&rft.epage=6107&rft.pages=6080-6107&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5121&rft_dat=%3Cproquest_cross%3E2124418100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124418100&rft_id=info:pmid/&rfr_iscdi=true