Matrix‐valued radial basis functions for the Lamé system
The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2018-11, Vol.41 (16), p.6080-6107 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6107 |
---|---|
container_issue | 16 |
container_start_page | 6080 |
container_title | Mathematical methods in the applied sciences |
container_volume | 41 |
creator | Grzhibovskis, R. Michel, C. Rjasanow, S. |
description | The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right hand side. The solvability of the interpolation problem is established. Additionally, stability, and accuracy estimates for the method are given. These theoretical results are illustrated on several numerical examples related to the Lamé system. |
doi_str_mv | 10.1002/mma.5121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124418100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124418100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2541-fa4312990f917af7e25bb3837a2387d89468616d489ca1ae467c6c9b4693d1aa3</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpSBwhEhs2Lh7H9UOsqoqXlIoNrK1J4ohUSVPsBMiOI3ANzsFNOAkpYctqZvHpH81PyCmwGTDGL-oaZ3PgsEcmwIyhIJTcJxMGilHBQRySoxDWjDENwCfkcoWtL9--3z9esOpcHnnMS6yiFEMZoqLbZG3ZbIat8VH75KIE66_PKPShdfUxOSiwCu7kb07J4_XVw_KWJvc3d8tFQjM-F0ALFDFwY1hhQGGhHJ-naaxjhTzWKtdGSC1B5kKbDAGdkCqTmUmFNHEOiPGUnI25W988dy60dt10fjOctBy4EKCHzwd1PqrMNyF4V9itL2v0vQVmd9XYoRq7q2agdKSvZeX6f51drRa__ge6eGR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124418100</pqid></control><display><type>article</type><title>Matrix‐valued radial basis functions for the Lamé system</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grzhibovskis, R. ; Michel, C. ; Rjasanow, S.</creator><creatorcontrib>Grzhibovskis, R. ; Michel, C. ; Rjasanow, S.</creatorcontrib><description>The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right hand side. The solvability of the interpolation problem is established. Additionally, stability, and accuracy estimates for the method are given. These theoretical results are illustrated on several numerical examples related to the Lamé system.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5121</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Basis functions ; Interpolation ; Lamé system ; Mathematical analysis ; matrix‐valued RBF ; Operators (mathematics) ; Partial differential equations ; particular solutions ; Radial basis function</subject><ispartof>Mathematical methods in the applied sciences, 2018-11, Vol.41 (16), p.6080-6107</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2541-fa4312990f917af7e25bb3837a2387d89468616d489ca1ae467c6c9b4693d1aa3</cites><orcidid>0000-0002-6646-230X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Grzhibovskis, R.</creatorcontrib><creatorcontrib>Michel, C.</creatorcontrib><creatorcontrib>Rjasanow, S.</creatorcontrib><title>Matrix‐valued radial basis functions for the Lamé system</title><title>Mathematical methods in the applied sciences</title><description>The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right hand side. The solvability of the interpolation problem is established. Additionally, stability, and accuracy estimates for the method are given. These theoretical results are illustrated on several numerical examples related to the Lamé system.</description><subject>Basis functions</subject><subject>Interpolation</subject><subject>Lamé system</subject><subject>Mathematical analysis</subject><subject>matrix‐valued RBF</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>particular solutions</subject><subject>Radial basis function</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10EtOwzAQBmALgUQpSBwhEhs2Lh7H9UOsqoqXlIoNrK1J4ohUSVPsBMiOI3ANzsFNOAkpYctqZvHpH81PyCmwGTDGL-oaZ3PgsEcmwIyhIJTcJxMGilHBQRySoxDWjDENwCfkcoWtL9--3z9esOpcHnnMS6yiFEMZoqLbZG3ZbIat8VH75KIE66_PKPShdfUxOSiwCu7kb07J4_XVw_KWJvc3d8tFQjM-F0ALFDFwY1hhQGGhHJ-naaxjhTzWKtdGSC1B5kKbDAGdkCqTmUmFNHEOiPGUnI25W988dy60dt10fjOctBy4EKCHzwd1PqrMNyF4V9itL2v0vQVmd9XYoRq7q2agdKSvZeX6f51drRa__ge6eGR4</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Grzhibovskis, R.</creator><creator>Michel, C.</creator><creator>Rjasanow, S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6646-230X</orcidid></search><sort><creationdate>20181115</creationdate><title>Matrix‐valued radial basis functions for the Lamé system</title><author>Grzhibovskis, R. ; Michel, C. ; Rjasanow, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2541-fa4312990f917af7e25bb3837a2387d89468616d489ca1ae467c6c9b4693d1aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Interpolation</topic><topic>Lamé system</topic><topic>Mathematical analysis</topic><topic>matrix‐valued RBF</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>particular solutions</topic><topic>Radial basis function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grzhibovskis, R.</creatorcontrib><creatorcontrib>Michel, C.</creatorcontrib><creatorcontrib>Rjasanow, S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grzhibovskis, R.</au><au>Michel, C.</au><au>Rjasanow, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix‐valued radial basis functions for the Lamé system</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>41</volume><issue>16</issue><spage>6080</spage><epage>6107</epage><pages>6080-6107</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The problem of finding an approximate particular solution of an elliptic system of partial differential equations is considered. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right hand side. The solvability of the interpolation problem is established. Additionally, stability, and accuracy estimates for the method are given. These theoretical results are illustrated on several numerical examples related to the Lamé system.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5121</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-6646-230X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2018-11, Vol.41 (16), p.6080-6107 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2124418100 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Basis functions Interpolation Lamé system Mathematical analysis matrix‐valued RBF Operators (mathematics) Partial differential equations particular solutions Radial basis function |
title | Matrix‐valued radial basis functions for the Lamé system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%E2%80%90valued%20radial%20basis%20functions%20for%20the%20Lam%C3%A9%20system&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Grzhibovskis,%20R.&rft.date=2018-11-15&rft.volume=41&rft.issue=16&rft.spage=6080&rft.epage=6107&rft.pages=6080-6107&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5121&rft_dat=%3Cproquest_cross%3E2124418100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124418100&rft_id=info:pmid/&rfr_iscdi=true |