Quantum Image Encryption Algorithm Based on NASS

This paper proposes a quantum image encryption algorithm based on n -qubit normal arbitrary superposition state (NASS) by using the basic scheme of quantum transformation and random phase transformation. According to theoretical analysis and experimental simulation on MATLAB system, we find that key...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2018-12, Vol.57 (12), p.3745-3760
Hauptverfasser: Li, Hai-Sheng, Li, Chunyu, Chen, Xiao, Xia, Hai-ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3760
container_issue 12
container_start_page 3745
container_title International journal of theoretical physics
container_volume 57
creator Li, Hai-Sheng
Li, Chunyu
Chen, Xiao
Xia, Hai-ying
description This paper proposes a quantum image encryption algorithm based on n -qubit normal arbitrary superposition state (NASS) by using the basic scheme of quantum transformation and random phase transformation. According to theoretical analysis and experimental simulation on MATLAB system, we find that key space is an important factor of encryption and decryption algorithm. When the secret key space is large, it is difficult for the attacker to crack the encrypted information. Based on this finding, we perform 2 n + 4 times phase transformation in the encryption process. And each transformation is random, which increases the difficulty of decryption. So there are a total of 2 n + 4 randomly transformed keys. In this paper, we design the implementation circuit of random phase transformation, and because the real quantum computer is not in our grasp, now we use MATLAB software to simulate grayscale image and color image encryption algorithm in classic computer, respectively. And the histogram, complexity and correlation are analyzed. Study shows that the proposed encryption algorithm is valid.
doi_str_mv 10.1007/s10773-018-3887-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124191814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124191814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b5131a5d4adf2d1065293e315ab86317bf135bae86c65576e5073dac2f4d9b373</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gLuC6-h7SdOkyzqMOjAoMroOaZvWDtMPk3Yx8-vtUMGVqweXe-6DQ8gtwj0CyAePICWngIpypSQ9npEAhWQ0EVKckwCAAZUyUpfkyvsdACQQqYDA-2jaYWzCdWMqG67a3B36oe7aMN1XnauHryZ8NN4W4RS9ptvtNbkozd7bm9-7IJ9Pq4_lC928Pa-X6YbmHOOBZgI5GlFEpihZgRALlnDLUZhMxRxlViIXmbEqzmMhZGwFSF6YnJVRkWRc8gW5m3d7132P1g96142unV5qhizCBBVGUwvnVu46750tde_qxriDRtAnMXoWoycx-iRGHyeGzYyfum1l3d_y_9APU-NkQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124191814</pqid></control><display><type>article</type><title>Quantum Image Encryption Algorithm Based on NASS</title><source>SpringerLink Journals</source><creator>Li, Hai-Sheng ; Li, Chunyu ; Chen, Xiao ; Xia, Hai-ying</creator><creatorcontrib>Li, Hai-Sheng ; Li, Chunyu ; Chen, Xiao ; Xia, Hai-ying</creatorcontrib><description>This paper proposes a quantum image encryption algorithm based on n -qubit normal arbitrary superposition state (NASS) by using the basic scheme of quantum transformation and random phase transformation. According to theoretical analysis and experimental simulation on MATLAB system, we find that key space is an important factor of encryption and decryption algorithm. When the secret key space is large, it is difficult for the attacker to crack the encrypted information. Based on this finding, we perform 2 n + 4 times phase transformation in the encryption process. And each transformation is random, which increases the difficulty of decryption. So there are a total of 2 n + 4 randomly transformed keys. In this paper, we design the implementation circuit of random phase transformation, and because the real quantum computer is not in our grasp, now we use MATLAB software to simulate grayscale image and color image encryption algorithm in classic computer, respectively. And the histogram, complexity and correlation are analyzed. Study shows that the proposed encryption algorithm is valid.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-018-3887-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuit design ; Computer simulation ; Correlation analysis ; Data encryption ; Elementary Particles ; Encryption ; Histograms ; Mathematical and Computational Physics ; Matlab ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum computers ; Quantum Field Theory ; Quantum Physics ; Qubits (quantum computing) ; Superposition (mathematics) ; Theoretical</subject><ispartof>International journal of theoretical physics, 2018-12, Vol.57 (12), p.3745-3760</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b5131a5d4adf2d1065293e315ab86317bf135bae86c65576e5073dac2f4d9b373</citedby><cites>FETCH-LOGICAL-c316t-b5131a5d4adf2d1065293e315ab86317bf135bae86c65576e5073dac2f4d9b373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-018-3887-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-018-3887-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Hai-Sheng</creatorcontrib><creatorcontrib>Li, Chunyu</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xia, Hai-ying</creatorcontrib><title>Quantum Image Encryption Algorithm Based on NASS</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>This paper proposes a quantum image encryption algorithm based on n -qubit normal arbitrary superposition state (NASS) by using the basic scheme of quantum transformation and random phase transformation. According to theoretical analysis and experimental simulation on MATLAB system, we find that key space is an important factor of encryption and decryption algorithm. When the secret key space is large, it is difficult for the attacker to crack the encrypted information. Based on this finding, we perform 2 n + 4 times phase transformation in the encryption process. And each transformation is random, which increases the difficulty of decryption. So there are a total of 2 n + 4 randomly transformed keys. In this paper, we design the implementation circuit of random phase transformation, and because the real quantum computer is not in our grasp, now we use MATLAB software to simulate grayscale image and color image encryption algorithm in classic computer, respectively. And the histogram, complexity and correlation are analyzed. Study shows that the proposed encryption algorithm is valid.</description><subject>Algorithms</subject><subject>Circuit design</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Data encryption</subject><subject>Elementary Particles</subject><subject>Encryption</subject><subject>Histograms</subject><subject>Mathematical and Computational Physics</subject><subject>Matlab</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Superposition (mathematics)</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEd_gLuC6-h7SdOkyzqMOjAoMroOaZvWDtMPk3Yx8-vtUMGVqweXe-6DQ8gtwj0CyAePICWngIpypSQ9npEAhWQ0EVKckwCAAZUyUpfkyvsdACQQqYDA-2jaYWzCdWMqG67a3B36oe7aMN1XnauHryZ8NN4W4RS9ptvtNbkozd7bm9-7IJ9Pq4_lC928Pa-X6YbmHOOBZgI5GlFEpihZgRALlnDLUZhMxRxlViIXmbEqzmMhZGwFSF6YnJVRkWRc8gW5m3d7132P1g96142unV5qhizCBBVGUwvnVu46750tde_qxriDRtAnMXoWoycx-iRGHyeGzYyfum1l3d_y_9APU-NkQQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Li, Hai-Sheng</creator><creator>Li, Chunyu</creator><creator>Chen, Xiao</creator><creator>Xia, Hai-ying</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Quantum Image Encryption Algorithm Based on NASS</title><author>Li, Hai-Sheng ; Li, Chunyu ; Chen, Xiao ; Xia, Hai-ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b5131a5d4adf2d1065293e315ab86317bf135bae86c65576e5073dac2f4d9b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Circuit design</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Data encryption</topic><topic>Elementary Particles</topic><topic>Encryption</topic><topic>Histograms</topic><topic>Mathematical and Computational Physics</topic><topic>Matlab</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Superposition (mathematics)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hai-Sheng</creatorcontrib><creatorcontrib>Li, Chunyu</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xia, Hai-ying</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hai-Sheng</au><au>Li, Chunyu</au><au>Chen, Xiao</au><au>Xia, Hai-ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Image Encryption Algorithm Based on NASS</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>57</volume><issue>12</issue><spage>3745</spage><epage>3760</epage><pages>3745-3760</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>This paper proposes a quantum image encryption algorithm based on n -qubit normal arbitrary superposition state (NASS) by using the basic scheme of quantum transformation and random phase transformation. According to theoretical analysis and experimental simulation on MATLAB system, we find that key space is an important factor of encryption and decryption algorithm. When the secret key space is large, it is difficult for the attacker to crack the encrypted information. Based on this finding, we perform 2 n + 4 times phase transformation in the encryption process. And each transformation is random, which increases the difficulty of decryption. So there are a total of 2 n + 4 randomly transformed keys. In this paper, we design the implementation circuit of random phase transformation, and because the real quantum computer is not in our grasp, now we use MATLAB software to simulate grayscale image and color image encryption algorithm in classic computer, respectively. And the histogram, complexity and correlation are analyzed. Study shows that the proposed encryption algorithm is valid.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-018-3887-z</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2018-12, Vol.57 (12), p.3745-3760
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2124191814
source SpringerLink Journals
subjects Algorithms
Circuit design
Computer simulation
Correlation analysis
Data encryption
Elementary Particles
Encryption
Histograms
Mathematical and Computational Physics
Matlab
Phase transitions
Physics
Physics and Astronomy
Quantum computers
Quantum Field Theory
Quantum Physics
Qubits (quantum computing)
Superposition (mathematics)
Theoretical
title Quantum Image Encryption Algorithm Based on NASS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Image%20Encryption%20Algorithm%20Based%20on%20NASS&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Li,%20Hai-Sheng&rft.date=2018-12-01&rft.volume=57&rft.issue=12&rft.spage=3745&rft.epage=3760&rft.pages=3745-3760&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-018-3887-z&rft_dat=%3Cproquest_cross%3E2124191814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124191814&rft_id=info:pmid/&rfr_iscdi=true